
Graph-Based Evolution of Visual Languages

Penousal Machado1, Henrique Nunes1 and Juan Romero2

1 CISUC, Department of Informatics Engineering, University of Coimbra, 3030
Coimbra, Portugal machado@dei.uc.pt

2 Faculty of Computer Science, University of Coruña, Coruña, Spain

Abstract. We present a novel evolutionary engine for the evolution of
context free grammars. The system relies on specially designed graph-
based crossover and mutation operators. While in most evolutionary art
systems each individual corresponds to a single artwork, in our approach
each individual is a context free grammar that specifies a family of shapes
following the same production rules. To assess the adequacy and com-
pleteness of the system we perform experiments using automated fitness
assignment and user-guided evolution. The experimental results show
that the system is able to create diverse and interesting families of shapes
even when the initial population is composed of minimal grammars.

1 Introduction

The main inspiration of this research is the seminal work of Stiny and Gips [1]
who introduced the concept of Shape Grammars and built, among others, shape
grammars that capture the architectural “language” of Frank Lloyd Wright’s
prairie houses. Although the grammars were hand-built, their results show that:
(i) it is possible to capture specific visual languages using a set of production
rules; (ii) it is then possible to use this set of rules to automatically generate
new objects that belong to the same visual language.

With the goal of developing a system that generates novel visual languages,
we created an evolutionary engine where each individual is a Context Free De-
sign Grammar (CFDG) [2] and built appropriate genetic operators for their
manipulation. The use of CFDGs allows the specification of complex families
of shapes through a compact set of rules, and has several potential advantages
over several other Evolutionary Art (EA) representations. The development of a
graph-based crossover operator was motivated by the need to take into account
the underlying structure of the individuals while exchanging genetic code.

A thorough survey of EA systems is beyond the scope of this paper and can
be found in [3]. To the best of our knowledge, there are two examples of the use
of CFDG for EA. Unfortunately, neither of them allows the evolution of visual
languages. CFDG Mutate [4] only allows the application of mutation operators
and does not handle non-deterministic grammars, which means each individual
represents a single shape (see Section 2). Saunders and Grace [5] present a para-
metric system that evolves parameters of specific CFDG hand-built grammars.

Although it allows some degree of exploration, it has the same shortcomings as
other parametric evolution approaches: there are strong constraints that limit
the search space and define the type of imagery produced by the system.

A previous work [6] showed that our engine allows the evolution of interesting,
complex and diverse visual languages when the initial population is composed of
hand-built CFDGs. In this paper we focus on the description of the evolutionary
engine, namely crossover and mutation operators, and on testing its generation
abilities in the absence of hand-built grammars.

2 Context Free

Context Free [7] is a popular open-source application that renders images speci-
fied using a simple language entitled CFDG (for a full description of CFDG see
[2]). In essence, and although the notation is different from the one used in for-
mal language theory, a CFDG program is an augmented context free grammar,
i.e., a 4-tuple: (V,Σ,R, S) where:

1. V is a set of nonterminal symbols
2. Σ is a set of terminal symbols
3. R is a set of production rules that map from V to (V ∪Σ)∗

4. S is the initial symbol

Fig. 1 presents a grammar and the image it generates. Programs are interpreted
by starting with S (in this case S = TREE) and proceeding by the expansion of
the production rules in breath-first fashion. Predefined Σ symbols call drawing
primitives (e.g., CIRCLE). CFDG is an augmented context free grammar: it
takes parameters that produce semantic operations (e.g., size produces a scale
change). Program interpretation is terminated when there are no V symbols left
to expand or the further expansion does not change the image [6].

The grammar of Fig. 1 is deterministic, there is exactly one rule for each
V symbol, therefore its interpretation will always result in the same image.
To specify languages of shapes we have to resort to non-determinism. In Fig.
2 we present a non-deterministic version of this grammar with two different
production rules for the ‘TREE’ symbol. When several production rules are
applicable one of them is selected randomly and the expansion proceeds. One
can control the probability of selection by specifying a weight after the V symbol
(0.8 and 0.2 in Fig. 2).

3 Evolutionary Context Free Art

In this section we describe our evolutionary engine. For the sake of parsimony
we focus on the key components of the system.

Each genotype is a well-constructed CFDG grammar. Phenotypes are ren-
dered using Context Free. To deal with nonterminating programs a maximum
rendering time is set. The genotype is represented by a directed graph created
as follows:

startshape TREE
rule TREE { CIRCLE {}

TREEA {size 0.95 y 1.6}}
rule TREEA { CIRCLE {}

TREEB {size 0.95 y 1.6}}
rule TREEB { CIRCLE {}

TREEC {size 0.95 y 1.6}}
rule TREEC { CIRCLE {}

TREED {size 0.95 y 1.6}}
rule TREED { CIRCLE {}

TREE {size 0.95 y 1.6 rotate 45}
TREE {size 0.95 y 1.6 rotate -45}}

 TREE

TREE

TREE
A

TREE
B

TREE
C

TREE
D

TREE

TREE

TREE1

TREE2

Fig. 1. A deterministic grammar, the tree-like shape it generates, and its graph repre-
sentation. The labels of the edges have been omitted.

startshape TREE
rule TREE 0.80 {

CIRCLE {}
TREE {size 0.95 y 1.6}

}
rule TREE 0.20 {

CIRCLE {}
TREE {size 0.95 y 1.6

rotate 45}
TREE {size 0.95 y 1.6

rotate -45}}

TREE

TREE

TREE
A

TREE
B

TREE
C

TREE
D

TREE

TREE

TREE

TREE

Fig. 2. A non-deterministic version of the grammar presented in Fig. 1, two instances
of the family of tree-like shapes it defines and its graph representation. The labels of
the edges have been omitted.

1. Create a node for each nonterminal symbol. In deterministic grammars each
node represents a single production rule (see Fig. 1). In non-deterministic
grammars each node encapsulates the set of all production rules associated
with the nonterminal symbol, e.g., the grammar presented on Fig. 2 results
in a directed graph composed of a single node that encapsulates the two
rules associated with the nonterminal ‘TREE’.

2. Create edges between each node and the nodes corresponding to the nonter-
minals appearing in its production rules (see Figs. 1 and 2).

3. Annotate each edge with the corresponding parameters (e.g. In Fig. 1 the
edge connecting TREE with TREEA possesses the label ‘size 0.95 y 1.6’)

3.1 Crossover Operator

The design of genetic operators that are well-suited to the representation is vital
for the success of an evolutionary algorithm. In our case the biggest challenge
was to design a crossover operator that allows the meaningful exchange of genetic
material between individuals. Given the nature of the representation, we devel-
oped a graph-based crossover operator based on the one presented by Pereira et
al. [8]. In simple terms, this operator allows the exchange of subgraphs between
individuals.

The crossover of the genetic code of two individuals, a and b, implies: (i)
Selecting one subgraph from each parent; (ii) Swapping the nodes and internal
edges of the subgraphs, i.e., edges that connect two subgraph nodes; (iii) Estab-
lishing a correspondence between nodes; (iv) Restoring the outgoing and incom-
ing edges, i.e., respectively, edges from nodes of the subgraph to non-subgraph
nodes and edges from non-subgraph nodes to nodes of the subgraph.

Subgraph selection Randomly selects for each parent, a and b, one crossover
node, va and vb, and a subgraph radius, ra and rb. Subgraph sra is composed
of all the nodes, and edges among them, that can be reached in a maximum of
ra steps starting from node va. Subgraph srb is defined analogously.

Swapping the subgraphs Swapping sra and srb consists in replacing sra by srb

(and vice-versa). After this operation the outgoing and the incoming edges are
destroyed. Establishing a correspondence between nodes repairs these connec-
tions.

Correspondence of Nodes Let sra+1 and srb+1 be the subgraphs that would be
obtained by considering a subgraph radius of ra + 1 and rb + 1 while perform-
ing the subgraph selection. Let msta and mstb be the minimum spanning trees
(MSTs) with root nodes va and vb connecting all sra+1 and srb+1 nodes, respec-
tively. For determining the MSTs all edges are considered to have unitary cost.
When several MSTs exist, the first one found is the one considered. The corre-
spondence between the nodes of sra+1 and sra+1 is established by transversing
msta and mstb, starting from their roots, as described in Algorithm 1.

Restoring outgoing and incoming edges The edges from a /∈ sra to sra are re-
placed by edges from a /∈ sra to srb using the correspondence between the nodes
established in the previous step (e.g. the incoming edges to va are redirected to
vb, and so on). Considering a radius of ra+ 1 and rb+ 1 instead of ra and rb in
the previous step allows the restoration of the outgoing edges. By definition, all
outgoing edges from sa and sb link to nodes that are at a minimum distance of
ra + 1 and rb + 1, respectively. This allows us to redirect the edges from sb to
b /∈ sb to a /∈ sa using the correspondence list.

Figs. 3 and 4 present examples of the crossover operator at the genotype and
phenotype level.

3.2 Mutation Operators

The development of the mutation operators was guided by the need to introduce
new genetic code and to ensure that the search space is fully connected, i.e.,
that all of its points are reachable from any starting point by the successive
application of genetic operators. This resulted in the use of ten operators, for
which, due to space limitations, we only present a cursory description:

Startshape mutate – randomly selects a nonterminal as starting symbol;

Algorithm 1 transverse(a, b)
set correspondence(a, b)
mark(a)
mark(b)
repeat

if unmarked(a.descendants) 6= NULL then
nexta ← RandomlySelect(unmarked(a.descendants))

else if a.descendants 6= NULL then
nexta ← RandomlySelect((a.descendants))

else
nexta ← a

end if
{**** do the same for nextb ****}
transverse(nexta, nextb)

until unmarked(a.descendants) = unmarked(b.descendants) = NULL

A

B

C D

I

H

E G

0

1

2

4

3

7

5

6

F

A

I

H

G

0

7

6

B

C D

E F

1

2 4

3 5

Fig. 3. On the left, the graphs of two parents. Considering va = B, vb = 1 and
ra = rb = 2, yields the subgraphs sra and srb whose nodes are depicted in grey.
To establish the correspondence between nodes, the MSTs, here represented by dotted
edges, are determined and Algorithm 1 applied. Considering that the algorithm returns
the correspondence list {B-1, C-2, E-2, D-3, F-5, G-6, G-7, D-4}, the crossover operation
results in the two descendants presented on the right.

Replace, Remove or Add symbol – when applied to a given production rule
these operators: replace one of the present symbols by a randomly selected
one; remove a symbol and associated parameters from the production rule;
add a randomly selected symbol in a valid random position. Notice that
these operators are applied to terminal and nonterminal symbols.

Duplicate, Remove or Copy&Rename – these operators: duplicate a pro-
duction rule; remove a production rule, updating the remaining rules when
necessary; copy a production rule, assigning a new randomly created name
to the rule and thus introducing a new nonterminal; the copy&rename muta-
tion will only affect the phenotype once the Add symbol mutation introduces
a call to the new nonterminal in a production rule.

Change, Remove or Add parameter – as the name indicates these opera-
tors add, remove or change parameters and parameter values;

Fig. 4. The two leftmost images are the parents, the others are results of their crossover.

4 Experimentation

In a previous study [6] we showed the adequacy of the engine to evolve families
of shapes when the initial population included hand-built grammars. In the
current work we are interested in determining if the system is self-sufficient
and if it can generate interesting and novel images and shape families without
resorting to hand-built grammars. For this purpose we conducted experiments
using automated-fitness assignment and user-guided evolution. Using an initial
population of randomly created grammars could hide possible shortcoming of
the genetic operators. As such, we chose to use as starting population a single
individual whose genotype consists of a minimal grammar: a startshape directive
and a single production rule composed of a call to the SQUARE terminal (the
list of CFDG predefined terminals can be found in [2]).

We use a generational non-elitist approach and roulette wheel selection. In
all experiments presented here: population size = 50, crossover probability =
0.7, maximum crossover radius = 3, mutation probability = 0.01 per individual
(for each of the ten mutation operators). In the automated fitness runs the max
number of generations = 100, while in the user-guided ones the stopping criteria
were determined by the users.

4.1 Fitness Functions

In user-guided runs the fitness is supplied by the user who may assign to each in-
dividual a value in the [0, 9] interval. For automated fitness runs we experimented
three different fitness formulas:

RMSE – The fitness of an individual, a, is calculated by determining the root
mean square error between its phenotype, i(a), and a target image, t, as
follows: fitness(a) = 1/(1 + rmse(i(a), t))

Fractal Dimension – Following Taylor et al. [9], among others, fitness is as-
signed by estimating the fractal dimension (FD) of i(a) and comparing it
with a target value, v, as follows: fitness(a) = 1/(1 + (FD(i(a)) − v)2).
FD is estimated by the box counting method using the chaos library (http:
//www.math.uic.edu/~culler/chaos/). In the experiments presented here
two arbitrarily chosen target v values, 1.3 and 0.8, are considered.

JPEG – We use JPEG compression to estimate image complexity [10]. Fitness
is proportional to the file size of the JPEG encoding of i(a): fitness(a) =
max(0, (size(jpeg(i(a)) − const)/1500). To increase the evolutionary pres-
sure, a subtraction by a constant is performed (const = 1000 in all runs, a

0

0,2

0,4

0,6

0,8

1

0 20 40 60 80 100

RMSE

FD‐08

FD‐1.3

JPEG

0

0,2

0,4

0,6

0,8

1

0 20 40 60 80 100

0

0,2

0,4

0,6

0,8

1

0 20 40 60 80 100

Fig. 5. Evolution of the best (left) and average (right) fitness throughout the auto-
mated fitness assignment runs. Results are averages of 10 runs.

value that was set taking into account the file size, 1100, of the image of the
first population).

When the genotype encodes a non-deterministic grammar the phenotype
may, and does, change from one interpretation to the other. As such, the fitness of
an individual may vary from generation to generation. In other words, although
an individual is a visual grammar, we assign fitness based on a single sample
of this grammar. This design option poses an additional difficulty for the EC
algorithm. Nevertheless, in theory, it should eventually converge to grammars
predominantly composed of highly fit images.

4.2 Experimental Results

The analysis of the experimental results attained by EA systems typically im-
plies a high degree of subjectivity. The main goals of the automated fitness runs
were: (i) determine if the evolution of fitness values corresponds to the expectable
behaviour of an EC engine; (ii) determine if the system is able to evolve complex
grammars starting from a minimal one. In other words, the goals are validating
the engine, the adequacy of the genetic operators, and test their ability to intro-
duce novelty and promote complexification. The possible discovery of interesting
shapes is not a goal.

The charts of Fig. 5 show the evolution of fitness throughout the automated
runs. As can be observed, these charts display the typical behaviour of EC ap-
proaches. Fig. 6 presents some of the individuals evolved in these runs. Generally
speaking, and although it is subjective to say it, the runs using RMSE fitness
produced the least interesting results. This was expected and consistent with the
results attained by researchers using RMSE fitness in expression-based EA (see,
e.g., [11]). The individuals evolved using JPEG fitness created the most complex
shapes, a result that was also expected. Interestingly, in several of these runs
the system tended to evolve star-like shapes. This can be explained by two fac-
tors: (i) it is relatively easy to find a compact grammar that generates star-like
shapes; (ii) the resulting images often result in a relatively large JPEG files.

The goal of the user-guided runs was to show that it was possible to generate
diverse, interesting and novel shapes starting from “scratch”. Typically the user
guided runs had 20 to 40 generations, and the first half of the run was spent

RMSE FD v = 0.8 FD v = 1.3 JPEG

Fig. 6. Examples of images created in automated fitness runs.

Fig. 7. Examples of images created in user-guided evolution runs.

on finding a grammar that draws more than a single shape. Thus, the use of a
single and minimal grammar as first population makes the first generations of
these runs quite boring for the user and, in normal circumstances, we would not
recommend this initialization approach. Nevertheless, for the purposes of testing
the system, we found it adequate. Fig. 7 presents examples of the images evolved
in different user guided runs, showing what can typically be expected in these
circumstances.

Although it would probably be advisable to increase the mutation probability
during the first generations of these runs, the mutation operators proved valid,
producing outcomes that are conceptually similar to the effects of mutation in
expression-based EA. That is, the effects of mutation range from minor visual
alterations to dramatic changes in appearance induced by small changes of the
genetic code, with the later occurring less often [12].

In subsequent experiments, we used some of the individuals evolved in these
runs as initial populations of other user-guided runs. Fig. 8 presents examples of
images evolved in this fashion. The higher population diversity allowed us to get
a better grasp of the behaviour of the crossover operator. In general terms, the
outcome of the crossover operator appears to depend on the structural similarity
of the genotypes and on their size. Additionally, when the parents are unrelated
the visual appearance of each descendent tends to be mostly determined by one
of the parents (see Fig. 4). An effect that is more visible with small genotypes.

As stated previously, non-deterministic grammars allow the definition of a
family of shapes. The potential for evolving families of shapes instead of single

Fig. 8. Examples of images created in user-guided runs initiated with images from
previous runs.

Fig. 9. Instances of the language of shapes defined by two individuals.

images is one of the main motivations for the use of CFDGs. However, in the
runs presented here, while assessing the individuals the user only has access
to one instance of the images an individual may generate. This means that
the quality, diversity and consistency of the language of shapes encoded by the
individual is not directly assessed. Nevertheless, and somewhat surprisingly, non-
trivial and interesting families of shapes were still evolved. This is arguably
explained by the following factors: (i) The experimental settings, namely starting
conditions and genetic operators, naturally lead to non-deterministic grammars,
which is confirmed by the analysis of the individuals generated in automated
fitness runs; (ii) User Fatigue – the user eventually grows tired of individuals
that systematically generate the same image, therefore the evolutionary process
indirectly favors non-deterministic grammars; (iii) individuals that fail to reliably
generate images valued by the user will eventually be discarded by evolution, in
other words consistency is also favored. Fig. 9 presents instances of the visual
languages defined by two of the evolved individuals.

5 Conclusions and Future Work

We presented a novel evolutionary engine that allows the evolution of CFDGs, is
able to cope with non-deterministic grammars, and allows their recombination
through a graph-based crossover operator. Due to these abilities, it successfully
overcomes the limitations of previous EC approaches where CFDGs are used.
When compared with typical expression-based and parametric evolution models,
our approach presents several advantages, including the abilities: to evolve visual

languages instead of individual images; to use hand-coded grammars; and to
allow the direct editing of the genotypes by the user.

Although the interpretation of the results is subjective, they provide evidence
of the adequacy of the developed crossover and mutation operators. They also
indicate that further experimentation is required to fully explore the potential
of the approach for the creation of visual languages. Nevertheless, we consider
this to be an important step in that direction.

In terms of future work, redesigning the user interface, exploring automatic
image fitness assignment schemes, and developing approaches to automatically
assess a language of shapes in terms of consistency, diversity and aesthetic qual-
ities of the generated images are our top priorities.

Acknowledgments We would like to thank the anonymous reviewers for their
thorough and insightful comments. This research is partially funded by the Span-
ish Ministry for Science and Technology, research project TIN2008−06562/TIN .

References

1. Stiny, G., Gips, J.: Shape grammars and the generative specification of paintings
and sculpture. In Freiman, C.V., ed.: Information Processing 71, Amsterdam,
North Holland Publishing Co. (1971) 1460–1465

2. Coyne, C.: Context free design grammar. http://www.chriscoyne.com/cfdg/ (last
accessed in September 2009)

3. Lewis, M.: Evolutionary visual art and design. In Romero, J., Machado, P., eds.:
The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music.
Springer Berlin Heidelberg (2007) 3–37

4. Borrell, A.: Cfdg mutate. http://www.wickedbean.co.uk/cfdg/index.html (last
accessed in September 2009)

5. Saunders, R., Grace, K.: Teaching evolutionary design systems by extending ‘Con-
text Free”. In: EvoWorkshops ’09: Proceedings of the EvoWorkshops 2009 on
Applications of Evolutionary Computing, Springer-Verlag (2009) 591–596

6. Machado, P., Nunes, H.: A step towards the evolution of visual languages. In: First
International Conference on Computational Creativity, Lisbon, Portugal (2010)

7. Horigan, J., Lentczner, M.: Context Free. http://www.contextfreeart.org/ (last
accessed in September 2009)

8. Pereira, F.B., Machado, P., Costa, E., Cardoso, A.: Graph based crossover —
A case study with the busy beaver problem. In: Proceedings of the Genetic and
Evolutionary Computation Conference. Volume 2., Orlando, Florida, USA, Morgan
Kaufmann (13-17 July 1999) 1149–1155

9. Taylor, R.P., Micolich, A.P., Jonas, D.: Fractal analysis of Pollock’s drip paintings.
Nature 399 (June 1999) 422

10. Machado, P., Cardoso, A.: Computing aesthetics. In Oliveira, F., ed.: Proceedings
of the XIVth Brazilian Symposium on Artificial Intelligence: Advances in Artificial
Intelligence. Volume 1515 of LNCS., Porto Alegre, Brazil, Springer (1998) 219–229

11. Colton, S., Torres, P.: Evolving approximate image filters. In: EvoWorkshops ’09:
Proceedings of the EvoWorkshops 2009 on Applications of Evolutionary Comput-
ing, Springer-Verlag (2009) 467–477

12. Machado, P., Cardoso, A.: All the truth about NEvAr. Applied Intelligence,
Special Issue on Creative Systems 16(2) (2002) 101–119

