
Enhancing Cluster Geometry Optimization with
Island Models

Antonio Leitao
CISUC

Department of Informatics Engineering
University of Coimbra

Email: apleitao@dei.uc.pt

Francisco B. Pereira
Instituto Superior de Engenharia de Coimbra

3030-199 Coimbra, Portugal
Email: xico@dei.uc.pt

Penousal Machado
CISUC

Department of Informatics Engineering
University of Coimbra

Email: machado@dei.uc.pt

Abstract—Island Models are parallel approaches to Evolu-
tionary Algorithms that not only offer the benefits of paral-
lelization but are also regarded as models with a extensively
distinct behaviour. This study applies for the first time an
Island Model to the optimization of short-ranged Morse clusters,
combined with a hybrid steady-state evolutionary algorithm and
a local optimization method. Different migration parameters
are experimented and the resulting behaviours are extensively
analysed. Results are compared to a state-of-the-art sequential
approach, showing slight improvements. Differences in behaviour
between the Island Model and the sequential approach are
comprehensively discussed. This study shows that Island Models
are a competitive parallel approach with promising results on
cluster geometry optimization problems.

I. INTRODUCTION

Cluster geometry optimization (CGO) problems play an
important role in the benchmarking of algorithms. The goal
of such problems is to determine the organization of atomic
and molecular clusters so that the total potential energy is
minimized. Lennard-Jones clusters [1], [2] and Morse clusters
[3] are the two most broadly used pair-wise models [4] due to
their simplicity and practical relevance. In particular, Morse
clusters are considered a tough test system and a highly rele-
vant problem to benchmark global search algorithms, having
been adopted by many research groups [4]. Functions that
model the interactions inside a cluster are often denominated
potential energy surfaces (PES) and depend solely on the
distance between particles that compose the cluster. The Morse
function can be used to estimate both long-range and short-
range interactions. Short-ranged Morse clusters are regarded
as particularly tough [5], [6].

PES are multidimensional functions that result in highly
roughed landscapes with a large number of local minima,
which increases exponentially with the size of the cluster,
and a deep multiple-funnel character [7]–[9]. Evolutionary
Algorithms (EAs) were first applied to CGO problems in the
early 1990s [10], [11] and are currently considered a state-
of-the-art method. The most successful approaches represent
particles using Cartesian coordinates and rely on problem
specific operators. Also, local search methods that depend on
first-order derivative information to guide individuals into the
nearest local optimum have been integrated and contributed
to better results. Such hybrid architectures have been first

proposed in [12] and have been used extensively [6], [13],
[14].

Population-basin hopping (PBH) [13] was the first
population-based approach to find the putative global optima
of short-ranged Morse clusters up to 80 atoms. However, it
needs to be provided a set of problem-dependent parameters,
making it difficult to use in situations where the global minima
is unknown. Two approaches were later proposed to overcome
this problem [15], [16]. Pereira and Marques [16] suggested
that the success of their approach was largely a result of an
increase in diversity induced by the adaption of parameters.
In [4] an unbiased hybrid steady-state EA with a single-phase
local optimization method based on a general quasi-Newton
method is presented. This EA includes mechanisms to ensure
that diversity is maintained and shows that such an approach
can efficiently tackle hard cluster optimization problems and
that preserving diversity is absolutely necessary to achieve
efficiency.

Islands Models (IMs) behave differently from standard EAs.
These distributed models divide individuals into subpopu-
lations that communicate only through migration, therefore
limiting selection and mating of individuals to those on the
same island. The creation of such borders may on the one
hand prevent the successful mixing of individuals but on the
other hand keep temporarily best solutions from dominating
the population and promote diversity on the global level [17].
IMs have been strongly influenced by the theories of shifting
balance [18] and punctuated equilibria [19].

Considering the characteristics of the PES, IMs seem ad-
equate to tackle CGO problems. In this paper we study
the design and implementation of an IM approach to the
unbiased hybrid steady-state EA introduced in [4]. We assess
the influence of migration parameters in the behaviour of the
algorithm and make a comparison with published results for
the sequential approach. We show that the IM is able to find
the putative optima for Morse clusters ranging from 41 to
80 atoms and that despite the differences in behaviour, the
number of successful runs are competitive with those obtained
by a state of the art approach thus making it an adequate
parallelization model for these problems.

In Sect. II, CGO is addressed, followed by a description of
a steady-state EA and a quasi-Newton local search procedure.



Sect III introduces IMs, covers related work, and introduces
the design of IMs for the proposed hybrid steady-state EA.
Sect. IV describes the experimental setup and includes the
discussion of a parametric study on IMs as well as a compar-
ison of the obtained results to those achieved by a sequential
version. Conclusions are drawn in Sect. V.

II. MORSE CLUSTERS OPTIMIZATION

In this section we will introduce the concept of Morse clus-
ters and make a brief overview on related work on CGO. Also,
we will present a hybrid steady-state EA for the optimization
of Morse clusters.

A. Morse clusters

The potential energy of Morse Clusters is defined by the
N-particle pair-wise additive Morse potential [3] given by (1),
where rij is the Cartesian distance between atoms i and j, ε is
the bond dissociation energy, r0 the equilibrium bond length
and β represents the range exponent of the potential. By setting
both ε and r0 to 1, the potential of (1) becomes a scaled
version of the Morse function [20] with non-atom specific
interactions, leaving β as the only adjustable parameter. In
this study β is set to 14 which corresponds to short-range
interactions, considered specially challenging as the PES is
extremely rough and a large number of local minima are
present [5]. Additionally, the global minima for instances with
a different number of atoms correspond to different cluster
geometries [20], [21].

VMorse = ε

N−1∑
i

N∑
j>i

{exp[−2β(rij − r0)]

− 2exp[−β(rij − r0)]} (1)

The employment of local minimization methods requires
the specification of the analytical gradient of the function
being optimized. The generic element n of the Morse cluster
potential gradient is given by (2) where xni represents the
difference between the Cartesian coordinates of particles i and
n. Similar expressions apply for the y and z axis.

gn = −2βε
N∑
i 6=n

(
xni
rni

)
{exp[−2β(rni − r0)]

− exp[−β(rni − r0)]} (2)

B. Related work

An overview of the most important approaches of EAs for
CGO can be found in [4]. We will be focusing on Morse
Clusters and will briefly review some of the most relevant
achievements in this section.

Morse clusters were first used as an optimization problem by
Doye and Wales [20] who applied a basin-hopping algorithm.
They report finding all but 12 of the putative global optima
for short-ranged Morse clusters up to 80 atoms. EAs were first
applied to this problem by Roberts et al. [22] and combined

real-valued representation [23] with a Lamarckian local opti-
mization method [12] and a Cut and Splice crossover operator
[12]. This approach was able to find nearly all putative global
optima for medium and short-range Morse clusters sized from
19 to 50 atoms. A later revisited version by the same research
group successfully found all global optima for the same range
[6].

Locatelli and Schoen proposed a two-phase local opti-
mization procedure designed to increase the efficiency of
methods that need to explore PESs with a multiple funnel
topology [24]. A basin-hopping approach using the two-phase
local optimization method was applied to Morse clusters [5]
discovering almost all putative global optima in instances
ranging from 41 to 80 atoms. The drawback of the two-
phase local approach is that it is not completely unbiased as it
requires the specification of a number of parameters which
are dependent on the structure of the optimal solution for
each instance to be optimized. Two research groups recently
proposed self-adaptive approaches to overcome this limitation
[15], [16].

The study presented in [16] suggested that the success of the
proposed approach was for the most part due to an increased
diversity introduced by the adaptive settings. A recent study
from the same research group confirmed this hypothesis [4].
This paper proposed a straightforward hybrid steady-state EA
relying on a single-phase local optimization procedure based
on a general quasi-Newton method and showed how CGO
problems can be tackled efficiently by an unbiased hybrid EA.

C. A hybrid steady-state EA for Morse clusters optimization

In the remainder of this section we present the main com-
ponents that compose the algorithm used in the experiments.
They are all similar to other state-of-the-art EAs and have
been thoroughly discussed in Pereira’s study on diversity on
CGO [4], [25]. The study proposes and compares different
operators and parameters that we have selected based on
the results obtained and the discussion on their behaviour.
Pereira gives special attention to the mechanisms responsible
for the maintenance of diversity which are therefore linked
the success of the proposed approach. Various studies support
that diversity is a key issue for the success of optimization
algorithms [4], [13], [15], [16], [26].

1) Local optimization: Various studies show that hybrid
approaches to CGO achieve striking effects regarding search
efficacy [6], [12], [14]. In this study, it is performed with
the Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS),
a quasi-Newton conjugate gradient method [27]. L-BFGS is
applied to every generated individual. During local search the
method is applied until a local optimum is found or until
a maximum number of iterations, the Local Search Length
(LSL), is reached. The accuracy of local search is set to
1.0E − 8.

2) Representation and genetic operators: A solution rep-
resents the position of all the particles that compose the
cluster, which means that for N atoms, an individual encodes
3 × N real values specifying the Cartesian coordinates of



each particle. The gene values range from 0 to N1/3. It is
widely accepted that this range allows the cluster volume to
scale correctly with N despite the lack of formal proof [6],
[23]. Inter-atomic distances are kept larger than a pre-specified
parameter δ since atoms being too close results on the potential
becoming too repulsive. This restriction is enforced during
initialization of the population and when the genetic operators
are applied. In this work, δ is set to 0.5. Fitness is assigned
by applying L-BFGS on each individual before using (1) to
calculate its potential energy.

Crossover is performed using the Generalized Cut and
Splice (GenC&S) operator [25] which was designed for CGO
problems with the aim of preserving some semantic properties
of the parents involved in crossover. GenC&S tries to ensure
that each parent contributes for the generation of offspring
with a set of atoms that are close together. Briefly, the operator
works by selecting a random number X ∈ [1, N − 1], where
N is the size of the cluster. The first parent contributes with
X atoms while the second parent contributes with N − X
atoms. Sub-clusters are selected from each parent so that their
atoms are neighbours in the 3D space and are superimposed to
create new individuals (consult [25] for implementation details
regarding the GenC&S operator).

Sigma mutation is applied to modify the location of an
atom inside a cluster. This is accomplished by changing the
three coordinates that determines the position of an atom in
the 3D space. The new location is obtained by perturbing
each coordinate with a random value sampled from a Normal
distribution with mean 0 and standard deviation σ.

3) Population model: Unlike generational models, in
steady-state EAs parents compete for survival with their off-
spring. Usually, in these models only one or two individuals
are generated at each step. After their creation it must be
decided if their are to be part of the population and if so, which
individuals should be replaced. The replacement strategy plays
a major role on the performance of steady-state algorithms
[28]–[30]. One well known strategy is to replace the worst
individual in the population with a newly generated one. This
method is known as the GENITOR [31] and is bound to put
the EA under high selective pressure, guiding it to premature
convergence [30], [32]. GENITOR is a simple example of
replacement strategies, other methods that handle selective
pressure in a more appropriate manner have been used. A
detailed characterization of selection pressure in different
replacement strategies can be found in [30] along with analysis
on takeover time and loss of diversity. The crucial issue raised
by this and other analysis is the need to maintain diversity
during the search. The search landscape that results from (1)
presents a number of local minima that increases exponentially
with the size of the cluster [13], therefore, it is imperative to
provide the EA with mechanisms that help prevent it from
getting stuck. A number of interesting approaches can be
found in the literature [33]–[35].

The replacement strategy chosen for this study was proposed
by Lee et al. [36] and later incorporated in the PBH algorithm
[13]. It includes mechanisms that help maintain an appropriate

1: Find X ∈ Pop such that d(X,D) is minimum
2: if [d(X,D) ≤ dmin and VMorse(D) < VMorse(X)] then
3: D replaces X in Pop
4: else if [d(X,D) > dmin] then
5: Select Y ∈ Pop, such that VMorse(Y ) is maximum
6: if [VMorse(D) < VMorse(Y )] then
7: D replaces Y in Pop
8: end if
9: else

10: D is discarded
11: end if

Fig. 1. Replacement strategy adopted by the EA

level of diversity. The algorithm in Fig. 1 shows the steps that
determine if an individual D will be inserted in the population
Pop. A brief explanation of the strategy follows: In each
iteration, two parents are selected and two descendants are
created. Considering a newly generated individual D already
locally optimized and evaluated, if the population contains
a solution that is close to D, then only the best of the two
is kept. Otherwise, D is different from all the solutions in
the population and it will replace the worst one if D has a
better fitness. In order to perceive if individuals are close, a
distance measure d(X,Y) that captures the dissimilarity between
individuals X and Y is required. Also, a parameter dmin

must be specified, representing the minimum allowed distance
between two individuals from the population.

4) Diversity measure: A large number of measures are
available in the literature. In [4] a review of different measures
for CGO can be found. In [26] a different classification
methodology is also available.

In this study, a measure based on distances of atoms to
the center of mass is used, as proposed in [13]. This choice
was based on the results and analysis presented in [4]. This
measure works as follows: First, for a given cluster, the
distance of each atom to the center of mass is calculated and
the values are stored in a vector in a non-decreasing way.
Then, given two clusters A and B and the matching ordered
sets OrdA and OrdB , the dissimilarity between the clusters
is calculated using (3).

dord(A,B) =
1

10

N∑
i=1

|(OrdA(i)−OrdB(i))|3 (3)

This measure has been incorporated in two-phase local
optimization PBH and applied to Morse clusters up to 80
atoms, showing excellent results.

In order to estimate dmin we rely on information provided
by the randomly generated population using (4) [13]. The pa-
rameter ζ specifies the proportion among the average distance
calculated with a set of individuals randomly generated and
the minimum allowed distance that may exist between two
solutions that simultaneously belong to the population. ζ has
been set to 0.25 in this study. Pop represents the size of the



population.

dmin = ζ ×
∑Pop−1

A=1

∑Pop
B=A+1 d(A,B)

1
2 (Pop

2 − Pop)
(4)

III. ISLAND MODELS FOR MORSE CLUSTERS
OPTIMIZATION

In this section we will introduce IMs and their distinct
characteristics as well as related work. We will also discuss
an approach to hybrid steady-state EAs.

A. Island models

Island models are models of EAs that use a number of
subpopulations (islands) as opposed to standard EAs (Pan-
mictic) [37] which evolve on their own and from time to
time exchange individuals through migration. IMs have the
appealing advantage of allowing the distribution of computa-
tion effort but more interesting is the fact that IMs result on
a behaviour distinct from standard EAs. While the separated
evolution processes of an IM make it different from standard
EAs, migration makes it different from isolated runs of EAs
[37].

The most distinctive aspect of IMs is that individuals are
restricted to mate with individuals of the same island since
selection is done independently. Regarding steady-state EAs,
IMs also influence the replacement strategy by restricting it
to the island of the emerging individual. These restrictions are
therefore borders that separate individuals and make different
evolutionary processes possible. Such an approach may on
the one hand prevent successful mixing of individuals but on
the other hand it helps keep temporarily better individuals
from dominating the whole population, resulting on blocks
of solutions that occupy different regions of the search space
[37].

The later characteristics support the maintenance of diver-
sity on the global population and provide ecological oppor-
tunity for weaker individuals to participate in the evolution
process and hopefully result in better individuals [38]. Re-
garding CGO problems, these characteristics may be helpful
in covering a large part of the search space. While intra-island
evolution pushes individuals toward different local optimums,
first stochasticity and later through selection, migration intro-
duces new genetic material into the islands, ultimately helping
them progress.

IMs require the specification of different components, in-
cluding the number and size of the islands, a topology that
states how islands are connected, operators for the selection
of emigrants and for the selection of individuals to be replaced
(migration policies) as well as parameters that determine
migration sizes and frequency. All these components play an
important role on IMs and need to be balanced in order to
achieve the desired effect.

B. Related work

Studies on IMs go back as far as Grefenstette’s study
[39] where he proposes a parallel GA. In his approach, the
best individuals from each island are broadcast to all the

others at every generation. Grosso was the first to observe
that dividing the population into islands resulted on faster
fitness improvements than on a Panmictic population. He also
showed that isolated islands performed worst than single large
populations [40].

Tanese was the first to perform systematic experiments with
migration and its effects on IM efficiency [41]–[43]. She
varied migration sizes and migration intervals and studied their
effects on the maintenance of allele diversity. She showed
that both need to be balanced and that too high or too small
rates result on worst solutions comparing with a Panmictic
approach. Also, she suggested using different GA parameters
in each island in order to prevent premature loss of diversity.

Arguably, migration sizes and intervals are the most im-
portant parameters in IM’s. Different studies are available in
the literature on the effects of these parameters. The most
popular approach is to use fixed sizes and intervals between
migrations. Effects on Genetic Algorithms [38], [44] and
Genetic Programming [45], [46] are available. Variation of
island numbers and sizes have also been regarded as important.
A large number of islands is usually desirable, helping the
system cover a larger area of the search space. However, for
a fixed population size, the size of each island reduces as
the number of islands increases. In [38] it is suggested that
increasing the number of islands is beneficial as long as the
island size doesn’t fall under a given threshold.

Migration policies have also been thoroughly studied.
Cantu-Paz, in [47], shows how different migration policies
affect selection pressure and speed of convergence. He shows
that choosing migrants and individuals to be replaced accord-
ing to their fitness increases selection pressure and guides the
process to convergence faster. Similar conclusions are obtained
in [38]. Migration topologies help control how information
spreads through the islands. The sparser the topology is, the
slower information spreads in the system. Popular topologies
include an array, a ring, a grid, a star or fully connected
topologies. A study on different topologies can be found in
[48]. Fernandez [45] has proposed a dynamic topology where
connections between islands represent potential migrations and
islands choose a target at each migration step.

C. An approach to hybrid steady-state EAs

IMs require a population of size P to be divided in N
islands of size M so that P = N × M . The steady-state
approach used in this study has a strong effect on the be-
haviour of the islands, helping reduce premature convergence
and maintaining diversity internally, thus allowing the use
of a large number of islands without compromising their
performance. In this study we have split a population of 100
individuals into 10 islands of 10 individuals each. Despite
this effort, a system consisting of 10 islands is quite small,
promoting the fast spread of individuals through migration and
the consequent loss of diversity, specially when considering
the size of the islands. In order to reduce this effect we have
used a dynamic topology [45] as described in Sect. III-B. We
think of our topology as a bidirectional fully connected graph



1: Consider a candidate immigrant (I) to a subpopulation
(Pop)

2: for each individual (P) in Pop do
3: if d(I, P ) == 0 and VMorse(I) == VMorse(P ) then
4: Discard I
5: Return
6: end if
7: end for
8: sort Pop
9: Replace a random individual except Pop[0]

Fig. 2. Replacement strategy used by the migration policy

where each edge represents potential migrations. This choice
makes each island able to communicate with every other but
with a probability of 10% in each migration step.

The migration policy applied was random-random as it
reportedly causes less impact on the algorithms convergence.
Therefore, individuals will be randomly selected from their
island of origin and will replace random individuals at the
target island. However, in order to adapt this strategy to the
steady-state model, restrictions were imposed so that migrants
arriving at an island are discarded if an equal individual is
already present in the population as shown by the algorithm
in Fig. 2. Comparison between individuals relies on their
fitness values and distance between them as described by (3).
This strategy will keep migration from causing duplication of
individuals which would increase their influence on selection
for reproduction. We also protect the best individual from
being replaced.

Despite these mechanisms to maintain diversity, migration,
on a global level, still causes duplication of some genes and
deletion of others. Therefore, the number of migrants sent by
each island to their target should on the one hand be enough to
promote innovation and progress but on the other hand small
enough to prevent flooding, fast duplication and deletion of
genes. In this study we have experimented with migration rates
of 1, 2 and 4 individuals.

We have also experimented with intervals of 5 and 10 gener-
ations between migrations. The interval should be long enough
to allow for the exploitation of new genetic material that is
injected into each island through migration. This will allow
useful genes to spread through the subpopulations, guiding
them to new areas of the search space and generating locally
optimized individuals. Spreading these individuals allows the
recombination of optimized solutions. However, increasing the
size of the intervals will cause already optimized islands to
remain in stasis for longer periods of time, wasting resources
and causing them to be less productive until the stop condition
is reached.

IV. EXPERIMENTAL RESULTS

In this section we will cover the experimental setup and
analyse the results obtained. A parametric study on the IM is
first discussed followed by a study on the results of the best
setting.

A. Experimental settings

1) Panmictic approach: Each experiment evolves a pop-
ulation of 100 individuals until 5,000,000 evaluations are
performed. Each iteration of the L-BFGS algorithm counts
as 1 evaluation. LSL is set to 1,000. Selection is done
through tournament of 5 individuals, followed by crossover
at the rate of 0.7 and mutation at the rate of 0.05. Also,
σ = 0.05 × N1/3. Experiments were repeated 30 times for
Morse clusters ranging from 41 to 80 atoms. For analysis
purposes, a generation counter is incremented every time 100
individuals are generated.

2) IM approach: Similarly to the number of individuals,
the number of allowed evaluations have also been divided by
the islands. Therefore, each island will stop when 500,000
evaluations have been conducted. Also, while tournament of
5 individuals may be well suited for a population of 100
individuals, in subpopulations of 10 individuals it would cause
a very high selection pressure, ultimately stopping the 4
individuals with worst fitness from sharing their genes on their
present islands (40% of the global population size). While
migration might at some point allow these individuals to move
to islands where they have a chance of sharing their genes,
there is high probability of them being deleted before doing
so, therefore, we have set the tournament size to 2.

For each combination of migration rates and intervals,
experiments were repeated 30 times for a small set of Morse
clusters instances. The analysis of the behaviour for different
setups is presented in Sect. IV-C and leads us to believe that
using a rate of 1 individual with intervals of 5 generations
between migrations is the most beneficial to the evolution
process. For this particular setup, experiments were repeated
30 times for Morse clusters ranging from 41 to 80 atoms.

B. Performance metrics

On a global level, the performance of the IM is based
on its ability to reach the putative optima. Therefore, during
experiments we registered the number of runs where the
optima was found for different Morse cluster sizes. This
measure is widely accepted for the evaluation of state-of-the-
art approaches for CGO [4], [5], [13], [21].

In order to compare the behaviour of different parameters
in IMs, other metrics were necessary. For each generation, the
following elements were registered for each island: best fit-
ness, average fitness, number of substitutions, average dissim-
ilarity between individuals and fitness of incoming immigrants.
The metrics are independent for each island. On a global level
this allows for the calculation of the global best fitness, global
average fitness, total number of substitutions and average inner
diversity of the islands. Some of this metrics have been used
for the analysis of steady-state approaches to CGO [4] while
others have been used in the analysis of IM behaviour [37].

C. The influence of IM parameters

This section details the differences in behaviour between
various parameter setups. First we will address the best setup
followed by a comparison with other migration rates and
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intervals. While comparing a given parameter, all other keep
the value of the best setup.

Fig. 3 shows that the average inner diversity of the islands is
maintained along the run, in spite of the sudden peaks that are
the result of migration. Despite the small size of the islands,
the replacement strategy applied by the steady-state approach
is able to prevent the fast convergence of individuals. Also,
Fig. 4 shows that newly bred individuals are able to integrate
the subpopulations consistently along the run, suggesting that
diversity, on a global level, is maintained sufficiently high to
promote progress. Migration plays a delicate double role, on
the one hand duplicating and deleting genes and on the other
hand injecting new genetic material into islands, thus helping
the emergence of new innovative individuals.

More interestingly, on an island level analysis, Fig. 5 shows
that islands are able to adequately take advantage of new
genetic material. It is clear that a correlation between progress
in terms of best fitness and immigrants exists, either by the
inclusion of new best individuals or more interestingly by the
exploitation of worse ones. As soon as these individuals are
available for selection, they are able to spread their genes
through the population, allowing it to escape local optima.

1) Number of migrants: Fig. 5 shows that migration of 1
individual at each step is enough to help islands evolve. One
may think that by increasing the number of individuals to be
migrated there is a higher chance of injecting helpful genetic
material into target islands, specially since the policy used may
reject some individuals. However, Fig. 6 shows that there is
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Fig. 6. Fitness evolution along a run for a cluster of 51 atoms. 2 migrants
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not much gain from migrating 2 individuals instead of 1. In
fact, in Fig. 3 we can observe that the average inner island
diversity is slowly decreasing which is more visible for rates
of 4 migrants. The nature of this migration policy and the fact
that it both duplicates and deletes genes, helped by the small
size of the islands, ultimately leads to loss of global diversity
which at the end disrupts both exploration and exploitation,
guiding the system to premature convergence. A similar result
may be expected by using a fixed topology with a high number
of neighbours relative to the number of islands.

2) Migration intervals: A migration interval of 10 genera-
tions is still able to promote progress in the islands as is shown
by Fig. 7 as well as maintain diversity as observable in Fig.
3. However Fig. 7 shows that islands undergo long periods of
stasis, where no progress is made. This behaviour suggests that
while diversity is maintained by the steady-state replacement
strategy, the islands have converged to a point where no helpful
reproduction is likely to occur. This behaviour is amplified by
the small size of the islands. Intervals of 5 generations seem
long enough for the islands to exploit new genetic material
and find optimized solutions. While it is likely that, given a
larger number of evaluations, results as good as the best could
be achieved, periods of stasis are a waste of resources and
evaluations.

D. Results

A general overview of the number of runs where the putative
optimum was found is presented in Table I. Lines labeled
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‘Panmictic’ show results from a previous study using the same
hybrid steady-state EA as applied here [4]. Lines labeled ‘IM’
show the success rate of our approach. The symbol ‘-’ was
used in instances where the optimum was not found.

On a first analysis, results show that our approach was able
to find all the putative optimum for Morse clusters consisting
of 41 to 80 atoms. Also, the global performance seems to
be slightly better than the Panmictic approach, finding the
global optimum with a higher rate on 21 instances of the
problem against 12 where the Panmictic found it more often
and 7 ties. In order to confirm this assumption, the pairwise
proportions test described in [49] was performed. Instances
where significant differences regarding success rates have been
found are highlighted in Table I. A significance level of 0.01
was used. Except for 5 instances, no significant differences
where found. On the one hand, IM approach obtained worse
results on 1 instance but on the other hand results have been
enhanced for 4 other.

On a closer analysis, Table I indicates that while the
IM approach performed well on some instances where the
Panmictic EA had a low number of successful runs, the
opposite happened as well. The instances used on this exper-
imental setup have optimal solutions with different geometric
structures as well as different properties [5], [20], [21] which
suggests that IMs may be better suited for certain instances
while the Panmictic may be more advantageous in others. This
phenomena emphasizes the differences in behaviour between
the different models, however further analysis is needed in
order to confirm so.

In IMs, selection and replacement strategies behave sub-
stantially different from the Panmictic approach. The division
of individuals into small islands and the consequent reduction
of tournament size increases the chance of less fit individuals
to be selected for reproduction. Regarding the replacement
strategy, new individuals face less concurrence from existing
solutions, thus having a higher chance to be included in the
population. Also dmin is set independently in each island,
meaning that different islands will ultimately have different
replacement behaviours. Both of the afore mentioned char-
acteristics help promote inter-island diversity. However, the
lack of a global replacement strategy is bound to allow some

loss diversity on the global population. The migration policy
applied helps reduce the impact.

Despite the restrictions imposed by the policy, migration is
still a duplicative and deleterious action as it is. The study
performed on the rate and interval between migrations has
proved to be very important and has shown that the correct
choice of parameters help keep this operation valuable to the
global population.

V. CONCLUSION

This paper presented for the first time an IM approach
to the optimization of Morse clusters. A sequential hybrid
steady-state model with a quasi-Newton local optimization
procedure was described and later included on the IM. A
comprehensive study on the influence of migration parameters
on the behaviour of the model was presented and the results
of the best setup were compared to the sequential approach.

The IM was able to find all putative optima for Morse
clusters ranging from 41 to 80 atoms and obtained a per-
formance slightly more robust than the sequential approach.
This study has shown that IMs are a competitive alternative
to sequential approaches, showing promising results. Future
work on this subject may include tackling the optimization of
Morse clusters up to 160 atoms as well as study how different
migration topologies, policies and population sizes effect IM
performance on hybrid steady-state approaches to CGO.
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