
Evolving Fitness Functions for Mating Selection

Penousal Machado and António Leitão

CISUC, Department of Informatics Engineering, University of Coimbra
Polo II of the University of Coimbra, 3030 Coimbra, Portugal

machado@dei.uc.pt, apleitao@student.dei.uc.pt

Abstract. The tailoring of an evolutionary algorithm to a specific prob-
lem is typically a time-consuming and complex process. Over the years,
several approaches have been proposed for the automatic adaptation of
parameters and components of evolutionary algorithms. We focus on the
evolution of mating selection fitness functions and use as case study the
Circle Packing in Squares problem. Each individual encodes a potential
solution for the circle packing problem and a fitness function, which is
used to assess the suitability of its potential mating partners. The ex-
perimental results show that by evolving mating selection functions it
is possible to surpass the results attained with hardcoded fitness func-
tions. Moreover, they also indicate that genetic programming was able to
discover mating selection functions that: use the information regarding
potential mates in novel and unforeseen ways; outperform the class of
mating functions considered by the authors.

1 Introduction

The choice of an adequate representation, genetic operators and parameters
is critical for the performance of an Evolutionary Algorithm (EA). To attain
competitive results it is usually necessary to choose or develop problem specific
representations, operators and fitness functions, and fine-tune parameters. This
can be a complex and time-consuming process. The use of self-adaptive EAs
– e.g., EAs that automatically adjust their parameters or components in order
to improve the performance in a specific problem or set of problems – has the
potential to overcome this problem.

The fitness function has a deep effect on the selection and survival process. In
optimization problems the choice of a fitness function may appear to be straight-
forward. Nevertheless, in the context of sexual reproduction, individuals may
have an advantage in choosing mating partners in accordance to criteria other
than fitness. For instance, an individual that chooses its mates in accordance to
their genetic compatibility may gain an evolutionary advantage.

We focus on the evolution of fitness functions for mating selection, using as
test problem the Circle Packing in Squares (CPS). Each individual is composed
by two chromosomes: (i) a candidate solution for the CPS problem encoded as
a vector (ii) a mating fitness function which is used to evaluate the potential
mates of the individual. We test two different approaches for the representation

S. Silva et al. (Eds.): EuroGP 2011, LNCS 6621, pp. 227–238, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

228 P. Machado and A. Leitão

of the evolving mating fitness functions. In the first mating fitness functions are
weighted sums, and the weights are under evolutionary pressure. In the second,
the mating fitness function is conventional Genetic Programming (GP) tree [1].

We begin by making a brief overview of the state of the art on adaptive EAs
focusing on their classification. Next, we introduce the CPS problem and its
equivalence with the point scattering problem. In the fourth section, we describe
our approach to the evolution of mating fitness functions. The experimental setup
is described in the fifth section, while the experimental results are presented and
analyzed in the sixth. Finally, we present overall conclusions and future research.

2 State of the Art

EA researchers often face the challenge of designing adequate EAs for specific
problems. To automate the task of finding a good design, and set of parameters,
one may adapt these components and variables along the evolutionary process.
Over the years, several approaches have been proposed for the evolution of EAs.
Angeline [2] has presented a classification of these approaches, which was later
expanded by Hinterding [3]. He proposes two axis of classification: adaptation
type and on the adaptation level.

Adaptation Type. Evolving EAs may be static or dynamic. In static adapta-
tion the tuning of parameters is made between runs. This is usually accomplished
by an external program (or human) that performs a set of test runs and attempts
to find a link between settings and performance. The work of De Jong [4] con-
stitutes an example of such an approach. He focused on single-point crossover
and bit mutation probabilities in GA, performing a wide number of tests, and
empirically establishing recommended mutation and crossover probabilities for
several problems.

Dynamic adaptation relies on mechanisms that modify EA parameters during
the evolutionary run without external control. They may use, or not, some form
of feedback from the evolutionary process to control adaptation. This approach
can be further divided into deterministic, adaptive and self-adaptive.

Deterministic dynamic adaptation uses no feedback from the EA. Instead, it
uses a set of deterministic rules that alter the strategy parameters in a predeter-
mined way when a given event takes place. For instance, Hinterding [3] describes
an approach where the mutation rate of a Genetic Algorithm (GA) decreases as
the number of generations increases.

Adaptive dynamic adaptation approaches use feedback information regarding
the progress of the algorithm to determine the direction and magnitude of the
changes made to strategy parameters. E.g., Bean and Hadj-Alouane [5] adjust a
penalty component for constraints violation on a GA by periodically stopping the
run and evaluating the feasibility of the best individuals of the last generations.

Self-adaptive dynamic adaptation relies on evolution to modify EA parame-
ters. The control parameters are encoded into each individual in the population
and undergo recombination and mutation as part of the genotype. Eiben et al.

Evolving Fitness Functions for Mating Selection 229

[6] studied the self-adaptation of the tournament size. Each genotype has an
extra parameters that encodes the tournament size. On each selection step tour-
nament size is determined by a voting system. Spears [7] proposes the use of an
extra gene to encode the type of crossover, two-point or uniform, that should be
use when recombining the genetic code of the corresponding individual.

Adaptation Levels. The level within the EA where adaptation takes place is
another axis of classification. Adaptation can be defined in four levels: environ-
ment, population, individual and component.

Environment level adaptation takes place when the response of the environ-
ment to the individual is changed. Mostly this affects, somehow, the fitness
function, either by changing the penalties or weights within it or by changing
the fitness of an individual in response to niching. In [8], Angeline argues that
competitive fitness functions have many advantages over typical approaches,
specially when there is little knowledge about the environment.

Population level adaptation consists of adapting parameters that are shared
and used by the entire population. The work of Fogarty [9] where the mutation
rate of the entire population evolves through time is an example of such an
approach.

Individual level adaptation evolves strategy parameters that affect particu-
lar individuals. Often these components are encoded in each individual, e.g.,
Braught [10] uses a self-adaptive scheme where an extra gene that codifies the
mutation rate of each individual.

Component level adaptation acts on strategy parameters that affect specific
components or genes of an individual. Fogel’s study [11] on the self-adaptation
of finite state machines is an example of this approach, exploring the association
of a mutability parameter to each component of the finite state machines.

2.1 Other Approaches

Grefenstette [12] suggests conducting a search over a parameterized space of GAs
in order to find efficient GAs for a function optimization task (this work was later
applied to GP as well). The search uses two levels: a macro level representing a
population of EAs that undergo evolution; a micro level where each represented
EA acts on a population of candidate solutions for a given problem. The use of
linear variants of GP to evolve EAs has also been an active field of research, con-
sider for instance the work of Oltean on Multi Expression Programming (MEP)
[13] and Linear Genetic Programming (LGP) [14]. Spector and Robinsons [15]
explore the use of Push – a stack-based programming language able to represent
GP systems – to evolve EAs, including the co-evolution of mate selection.

2.2 Evolving the Fitness Function

Evolving the fitness function implies changes in the way the environment re-
sponds when evaluating individuals of a population. Darwen and Yao [16] have
synthesized some previous work done on fitness sharing to tackle a multi optima

230 P. Machado and A. Leitão

problem. The fitness sharing technique modifies the search landscape during the
evolutionary run by reducing the payoff in niches that become overcrowded.
Hillis [17] explores the co-evolution of two populations – candidate solutions and
test cases – for the evolution of sorting networks. The fitness of the candidate
solutions is determined accordingly to their ability to sort the test cases of the
second population; the fitness of a test case is determined by the amount of
sorting errors it induces.

3 Circle Packing in Squares

We focus on CPS, a surprisingly challenging geometrical optimization problem
relevant for real life storage and transportation issues. It consists in finding a
spacial arrangement for a given number circles of unitary radius that minimizes
the area of the minimal square that contains them. The circles may not overlap.
In Fig. 1 we present the optimal solutions for the packing of 7, 15, and 24 circles
into a square. The optimal solutions for sets from 2 to 24 circles are known.

The CPS problem is closely related to that of scattering n points in a unit
square such that the minimal distance between any of them is maximized [18].
In order to transform from this model to that of a square containing fixed size
circles one must apply the transformation presented in Fig. 2 where r is the
radius of the circles, d is the greatest minimal distance between points and S is
the side of the resulting square.

We conducted a wide set of experiments using GA and GP approaches [19],
which show that, in an evolutionary context, it is advantageous to see the CPS
problem as a scattering problem: it avoids the overheads caused by invalid can-
didate solutions (e.g. where circles overlap) leading to better results. As such,
we will adopt this representation in the experiments described in this paper.

Fig. 1. Optimal solutions for 7, 15, and 24 circle packing in a square

S = 2r + 2r
d

Fig. 2. Calculation of the side of the square for the 5 circles optimal solution

Evolving Fitness Functions for Mating Selection 231

4 Mating Selection

Without loss of generality, considering tournament based selection, the mating
selection procedure can be described as follows: (i) a parent is selected from the
population using tournament selection based on fitness; (ii) a set of t mating
candidates is randomly selected from the population; (iii) the candidate that,
according to the parent, is fittest for mating purposes is selected for sexual
reproduction with this parent; The process is repeated until sufficient offsprings
are generated.

4.1 Mating Selection in the Circle Packing in Squares Problem

In order to better understand the means by which the mating fitness can be
evolved, there’s a characteristic of the CPS problem that should be mentioned.
Usually, optimal solutions can be decomposed in subsets that are in turn optimal
(or near optimal) solutions for a different instance of the problem. More formally,
the optimal solution for the packing of n circles in a square may also encode
optimal solutions for the packing of n−i circles for i in [1, n−2]. As Fig. 3 shows
the optimal representation for 9 circles also encodes the optimal solution for 5
circles, 4 circles and 2 circles. One may be inclined to think a good performance
in a n − i problem promotes a good performance in the n packing problem.
However, this is not always the case. For instance, to pack 7 circles optimally
one must use an inefficient packing of 4 and 6 circles, and an optimal packing of
4 (see Fig. 1) . In other words, the optimal packing of 7 circles can be created
by adding 3 circles to the optimal packing of 4 circles; adding circles to the
optimal packing of 5 or 6 circles leads to an inefficient packing of 7 circles.
Thus, for evolving solutions for the 7 circle instance it makes sense to value the
ability of the candidates to efficiently pack 4 circles and penalize candidates that
pack 5 or 6 circles optimally. These observations made us consider the following
hypotheses: the performance of an individual on a n − i packing problem may
provide information regarding its performance on the target n packing problem;
this information may be valuable for mating selection purposes.

As such, when evaluating a mating candidate, the individual has access to
information regarding the fitness achieved by the candidate in the packing of
n − i circles for all i in [1, n − 2]. Our expectation is to evolve mating fitness
functions that use this information wisely, leading to a better performance in
the n circles instance.

To determine the fitness of an individual packing n circles in all instances of
the CPS problem of lower dimensionality one would need to consider a total of
Cn

2 + Cn
3 + ... + Cn

n−2 + Cn
n−1 packings of circles.

This becomes computationally intensive. In order to reduce computation and
increase the speed of the tests executed we perform the following simplification:
For determining the fitness an individual in the packing of k circles (with k < n)
we only consider the first k first circles represented in the chromosome, instead of
Cn

k possible combinations of k circles. With this simplification the computational
overhead becomes minimal and negligible.

232 P. Machado and A. Leitão

9 Circles 5 Circles 4 Circles 2 Circles

Fig. 3. Composition of optimal solutions by close to optimal subsets

eva lua t e mat ing cand ida t e s (mat ing candidates , parent) {
f o r i = 1 to #(mat ing candidates) {
c and i d a t e ma t i n g f i t n e s s e s i ←eva l (mat ing candidates i , parent)

}
re turn c and i d a t e ma t i n g f i t n e s s e s

}

Fig. 4. Evaluation of the mating candidates [20]

Each parent picks its mate among the candidates and so is bound to evaluate
them. In order to do this each individual encodes a mating fitness function that
it uses to evaluate its mating candidates. The evaluate mating candidates step,
described in Fig. 4, has been designed to receive the set of mating candidates and
the parent which is evaluating them, returning the candidates’ mating fitnesses.
The eval step uses the mating fitness function encoded in the parent to evaluate
each candidate.

Each individual is composed of two chromosomes. The first encodes a candi-
date solution for the CPS problem through a vector of n x, y coordinates. The
second encodes a mating fitness function. We explore two different approaches
for the encoding of the mating fitness function: one using GA and the other
using GP.

In the GA approach the mating fitness functions are weighted sums and the
chromosome encodes a set of weights. The MatingF itness of candidate mc
according to parent p is given by the following formula:

MatingF itnessmc =
n∑

k=2

wp
kFmc

k ,

where wp
k is the weight given by parent p to the fitness of the candidates in the

packing of k circles and Fmc
k is the fitness of the candidate mc in the packing

of k circles. In the GP approach the chromosome encodes a standard GP tree
that defines the mating fitness function. The terminal set includes the variables
Fmc

k , which allows the individual to use this information to access the mating
candidates.

Evolving Fitness Functions for Mating Selection 233

5 Experimental Setup

In order to understand the effect of mating selection and of evolving of the mating
fitness function we need to have a basis for comparison. We performed several
experiments using a standard GA approach to solve the CPS problem [19]. We
considered a wide set of parameters for tournament size, mutation rate and type
of mutation, and performed static adaptation over this set of parameters. The
parameters that resulted in best overall performance are presented in table 1.

Table 1. Parameter set for the standard GA approach

Representation x1, y1, ..., xn, yn

Initialization xn, yn in [0, 1]

Parents Selection Tournament size = 5

Crossover 1 − point

Crossover probability 90%

Mutation Gaussian mutation; mean = 0.0; stdev = 0.08

Mutation probability 2%

Elitism 1 individual

Table 2. Additional settings used in GA-based mating selection evolution

Representation x1, y1, ..., xn, yn, w2, ..., wn

Initialization xn, yn in [0, 1]; ws(n) in [−1, 1]

Crossover 1 − point

Crossover probability 90%

Mating Candidates Selection Tournament size = 5

Mutation Gaussian mutation; mean = 0.0; stdev = 0.08

Mutation probability 5%

Evolving Mating Fitness MatingF itnessmc =
∑n

k=2 wp
kF mc

k

To evaluate the effects of evolving the mating fitness function we conducted
experiments using the GA and GP based approaches for mating selection.

In GA-based mating fitness evolution the mating fitness function has been de-
signed by the authors to be a weighted sum of the fitness values of the candidate
in smaller instance of the CPS problem. An additional chromosome is added to
the standard GA representation to encode the weights. The genetic operators
are applied independently to each chromosome. For the chromosome encoding
the candidate solutions we use the previously established set of parameters pre-
sented in table 1. For the chromosome encoding the mating fitness function we
use the parameters presented in table 2. As previously this set of parameters
was established empirically using static adaptation (See section 2).

Likewise, in GP-based mating selection evolution we have two chromosomes:
a linear chromosome encoding the candidate solution; a mating fitness function

234 P. Machado and A. Leitão

Table 3. Additional settings used in GP-based mating selection evolution

Representation x1, y1, ..., xn, yn, GP tree

GP terminals F mc
s(2), .., F

mc
s(n), 0, 1, 2

GP functions +,−, ∗, /
GA Initialization xn, yn in [0, 1]

GP Initialization half-half

Mating Candidates Selection Tournament size = 5;

Evolving Fitness Function Output from the execution of the tree

represented by a GP tree. For the candidate solution chromosome we use the
parameters presented in table 1, for the GP chromosome the parameters and op-
erators are those employed by Koza [1]. The additional settings for this approach
can be found in table 3.

The fitness of an individual in the CPS problem is used for parent selection in
all approaches, and it is given by the size of the minimum square that contains
the circles (see Fig. 2). As such this is a minimization problem.

6 Experimental Results

For a given number of n circles, a given set of parameters and a chosen approach,
30 runs are executed. In each run 100 individuals evolve along 5000 generations
and the fitness in the CPS problem of the best individual and population mean
is saved at each generation. We performed tests for all n in [2, 24]. Table 4 shows
the results obtained in this study. Column N indicates the instance of the CPS
problem being tackled, while column optimal presents the optimal values for
that instance. Column Standard shows the results obtained by the standard GA
approach, i.e. both parents chosen by tournament selection based on CPS fitness.
Column Random present the results attained by choosing the first parent using
tournament selection based on CPS fitness and its mating partner randomly
from the current population. Column GA presents the results attained by using
GA-based mating fitness selection – i.e. the first parent is chosen using using
tournament selection based on CPS fitness and its mating partner is selected by
tournament selection based on the mating fitness of the candidates accordingly
to the mating fitness function encoded by the first parent. Likewise, column GP
presents the results achieved by GP-based mating fitness selection.

For each approach, the best column presents the CPS fitness of the best indi-
vidual found in the 30 runs, while the avg column presents the average fitness
of the best individuals over the 30 runs. Underlined values indicate the result
is better than the one attained using the Standard approach. Bold values indi-
cate that the value is better and that a statistically significant difference exists
(obviously, this only applies to average values).

A comparison of the results attained by the Standard and Random mating
selection approaches reveals that for small instances of the CPS it is often ad-
vantageous to select mates randomly. It is important to notice that this is not

Evolving Fitness Functions for Mating Selection 235

Table 4. Comparison of the results attained by the different approaches. Results are
averages of 30 runs. Lower values indicate better performance. Underlined values signal
results better than the ones attained using the Standard approach. Bold values indicate
that a statistically significant difference exists. Statistically significance determined
through the Wilcoxon–Mann–Whitney test. Confidence level of 0.95.

Static Mating Selection Function Evolved Mating Selection Function

Standard Random GA GP

N optimal best avg best avg best avg best avg

2 3.4142 3.4142 3.4142 3.4142 3.4142 3.4142 3.4142 3.4142 3.4142
3 3.9319 3.9319 3.9320 3.9319 3.9320 3.9319 3.9319 3.9319 3.9319
4 4.0000 4.0000 4.0266 4.0000 4.0001 4.0000 4.0255 4.0000 4.0001
5 4.8284 4.8288 5.0056 4.8287 4.9911 4.8285 4.9250 4.8286 4.9475
6 5.3282 5.3296 5.3669 5.3299 5.3674 5.3306 5.3685 5.3303 5.3804
7 5.7321 5.7426 5.8227 5.7379 5.8081 5.7353 5.8296 5.7348 5.8098
8 5.8637 5.8665 6.0212 5.8714 5.9615 5.8693 5.9913 5.8643 5.9898
9 6.0000 6.0072 6.5184 6.0086 6.4907 6.0042 6.5401 6.0018 6.5154
10 6.7474 6.7564 6.8936 6.7804 6.8854 6.7642 6.9110 6.7581 6.8536
11 7.0225 7.0323 7.1619 7.0822 7.1764 7.0600 7.2232 7.0418 7.1564
12 7.1450 7.1540 7.3966 7.2416 7.3565 7.1966 7.4809 7.1682 7.3438
13 7.4630 7.4977 7.8088 7.6036 7.8167 7.5663 7.8355 7.4816 7.7147
14 7.7305 7.8059 8.0705 7.8859 8.0950 7.9190 8.1509 7.8498 8.0048
15 7.8637 8.0332 8.3324 8.1102 8.4173 8.0296 8.4345 7.9677 8.2581
16 8.0000 8.4015 8.7014 8.4542 8.8632 8.3030 8.8153 8.3980 8.6012
17 8.5327 8.6688 8.8765 9.0022 9.2345 8.7143 9.0836 8.7065 8.8665
18 8.6564 8.8566 9.0996 9.1902 9.4966 8.9189 9.2724 8.8582 9.0984
19 8.9075 9.1482 9.4442 9.4789 9.9422 9.2049 9.6036 9.0178 9.3511
20 8.9781 9.3889 9.7212 9.9433 10.2839 9.2951 9.7641 9.1795 9.6030
21 9.3580 9.6980 9.9788 10.2998 10.7402 9.7305 10.1307 9.6730 9.9425
22 9.4638 9.9210 10.2610 10.6887 11.0512 9.9546 10.3705 9.9969 10.2693
23 9.7274 10.0625 10.5201 10.9262 11.5476 10.0631 10.6498 10.0943 10.5892
24 9.8637 10.3198 10.7725 11.2717 11.8382 10.5232 10.8163 10.4678 10.8034

equivalent to performing random search, the first parent is chosen by tourna-
ment selection using CPS fitness, only its mate is selected randomly. By choos-
ing mating partners randomly one lowers the selection pressure. Furthermore, it
may promote population diversity. The combination of these factors may avoid
premature convergence, explaining the best performance of the Random mat-
ing selection approach in small instances. The analysis of the evolution of CPS
fitness throughout the evolutionary runs supports this hypothesis. For larger
instances the lack of selection pressure penalizes the Random mating selection
approaches.

The performance of the GA-based mating selection approach is disappointing.
Although it was able to find better solutions than the standard approach for six
instances of the problem, the average of the best solutions is only better than
the one attained by the Standard approach in four instances, and the difference
is only statistically significant in two of them. This suggests that the overhead
inflicted on the evolution process by the necessity of evolving adequate weights

236 P. Machado and A. Leitão

is not rewarding. The approach should be able to reproduce the original fitness
function, and by doing so it would be expectable for it to achieve closer results
to those of the Standard approach. An analysis of the runs indicates that the
approach is unstable, in the sense that some runs produce significantly better re-
sults than others, which partially explains the worst average fitness. Despite this,
comparing the results with the ones attained by the Random mating selection
approach, revels that better results are attained for large instances of the CPS
problem. This indicates that the individuals are able to evolve mating fitness
functions that take advantage of the information provided to them, although
the reward is not enough to compete with the Standard approach.

Considering these results, the performance of the GP-based mating selection
approach is surprising. It attains better averages than the Standard approach
in eighteen instances and the differences are statistically significant for thirteen
of them. Moreover, the best solutions surpass those found using the Standard
approach in ten of the instances. For small instances of the CPS problem, where
Random mating performed better than the Standard approach, GP-based mat-
ing selection is also competitive, the averages are comparable to those attained
by Random mating, and the best individuals found tend to be better. Overall,
these results indicate that: the GP-based approach is able to evolve mating selec-
tion functions that take advantage of the information regarding the performance
of the candidate mates in smaller instances of the CPS problem in a useful way,
leading to better overall performance in spite of the overheads caused by the
need to evolve the mating selection functions.

The results attained by GP-based mating selection contrast with the ones of
the GA-based approach. This was a totally unexpected result, that demands
further analysis.

In GA-based mating, the mating fitness function was designed by the system
developers in a way that appeared adequate to the problem at hand, and that
is focused on the selection of the mating candidate that seem most fit for the
role. Moreover, the evolution process only evolves the weights used in the mating
fitness function. In GP-based mating selection the system must evolve the entire
mating fitness function. Thus, the search space of GP-based contains all the
mating fitness functions that can be evolved by the GA-based and a vast number
of functions of a different kind. It is, therefore, significantly larger. By these
reasons, the task of the GP-based approach appeared to be significantly harder
than the one of the GA-based approach. We find two, non-exclusive, hypotheses
for the better performance of the GP-based approach: (i) The “ideal” mating
fitness function varies during the course of the run – e.g., the best way to choose
mating partners in the beginning of the run may be useless in later generations
– and GP is able to adapt faster to these changing requirements than GA.
(ii) GP was able to evolve fitness selection functions that outperform the ones
constructible using the weighted sum template designed by us, and based on our
knowledge on the regularities and irregularities of the CPS problem.

Although, the experimental results are insufficient to draw definitive conclu-
sions, the analysis of the evolution of the weights during individual runs appears to

Evolving Fitness Functions for Mating Selection 237

support the first hypothesis. The analysis of the fitness mating functions evolved
by the GP-based approach is extremely difficult and the bottom line is that we are
unable to understand exactly how mating candidates are being evaluated. Never-
theless, it is clear that what the fitness functions evolved by this approach are
doing is radically different from a weighted sum, which supports the second hy-
pothesis. Thus, the analysis points towards a combination of both factors.

Our inability to explain how the GP-based approach is determining mating
fitness makes it impossible to fully understand the results. It does, however, also
indicate that the GP-based approach is using fitness mating functions that we
would be unlikely to design by hand, and surpassing the performance attained
by the ones we designed.

7 Conclusions

We focus on the self-adaptive evolution of mating fitness functions using the CPS
problem for test purposes. We perform an overview of previous work in the area,
and introduce the CPS problem, describing its regularities and irregularities,
and proposing ways to explore them for the purpose of developing mating fitness
functions that improve the performance of the EA. Two approaches, based on
GA and GP, are presented for the evolution of mating fitness functions.

The experimental results in the packing of two to 24 circles are presented
and discussed. These results reveal that the GA-based mating fitness evolution
approach – which evolves parameters for a mating fitness function designed by
the authors based on their knowledge of the CPS problem – is unable to surpass
the performance of a conventional approach. Contrastingly, the GP-based mating
fitness evolution approach, which explores a significantly larger search space of
mating fitness functions, is able to outperform all of the considered approaches.
Although the nature of the mating fitness evolved by the GP-based approach
was not fully understood, it is safe to say that they are very different from the
ones designed by the authors. This indicates that the GP-based approach is not
only able to evolve fitness mating functions that outperform hand coded ones,
but also to discover mating fitness function designs that would be unlikely to be
created by hand.

Acknowledgment

This work has been partially supported by the project PTDC/EIA-EIA/102212/-
2008, High-Performance Computing over the Large-Scale Internet.

References

1. Koza, J.R., Poli, R.: Genetic programming. In: Search Methodologies, pp. 127–164.
Springer, Heidelberg (2005)

2. Angeline, P.J.: Adaptive and self-adaptive evolutionary computations. In: Compu-
tational Intelligence: A Dynamic Systems Perspective, pp. 152–163. IEEE Press,
Los Alamitos (1995)

238 P. Machado and A. Leitão

3. Hinterding, R., Michalewicz, Z., Eiben, A.E.: Adaptation in evolutionary compu-
tation: A survey. In: Proc. of the 4th International Conference on Evolutionary
Computation, pp. 65–69 (1997)

4. De Jong, K.A.: An analysis of the behavior of a class of genetic adaptive systems.
PhD thesis, University of Michigan, Ann Arbor, MI, USA (1975)

5. Bean, J., Hadj-Alouane, A.: A dual genetic algorithm for bounded integer pro-
grams. Technical Report 92-53, University of Michigan (1993)

6. Eiben, A., Schut, M., de Wilde, A.: Boosting genetic algorithms with self-adaptive
selection. In: IEEE Congress on Evolutionary Computation, pp. 477–482 (2006)

7. Spears, W.M.: Adapting crossover in a genetic algorithm. In: Proc. of 4th Annual
Conference on Evolutionary Programming, pp. 367–384 (1995)

8. Angeline, P.J., Pollack, J.B.: Competitive environments evolve better solutions for
complex tasks. In: Proc. 5th International Conference on GAs, pp. 264–270 (1994)

9. Fogarty, T.C.: Varying the probability of mutation in the genetic algorithm. In:
Proc. of the 3rd International Conference on Genetic Algorithms, pp. 104–109
(1989)

10. Braught, G.: Evolving evolvability: Evolving both representations and operators.
In: Adaptive and Natural Computing Algorithms, pp. 185–188. Springer, Heidel-
berg (2005)

11. Fogel, L., Angeline, P., Fogel, D.: An evolutionary programming approach to self-
adaptation on finite state machines. In: Evolutionary Programming, pp. 355–365
(1995)

12. Grefenstette, J.: Optimization of control parameters for genetic algorithms. IEEE
Transactions on Systems, Man and Cybernetics 16(1), 122–128 (1986)

13. Oltean, M.: Evolving evolutionary algorithms with patterns. Soft Computing - A
Fusion of Foundations, Methodologies and Applications 11, 503–518 (2007)

14. Oltean, M.: Evolving evolutionary algorithms using linear genetic programming.
Evolutionary Computation 13, 387–410 (2005)

15. Spector, L., Robinson, A.: Genetic programming and autoconstructive evolu-
tion with the push programming language. Genetic Programming and Evolvable
Machines 3, 7–40 (2002)

16. Darwen, P., Yao, X.: Every niching method has its niche. In: Ebeling, W.,
Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141,
pp. 398–407. Springer, Heidelberg (1996)

17. Hillis, W.D.: Co-evolving parasites improve simulated evolution as an optimization
procedure. In: Emergent Computation, pp. 228–234. MIT Press, Cambridge (1991)

18. Hifi, M., M’Hallah, R.: A literature review on circle and sphere packing problems:
Models and methodologies. Advances in Operations Research (2009)

19. Leitão, A.: Evolving components of evolutionary algorithms. MSc Thesis, Faculty
of Science and Technology, University of Coimbra (2010)

20. Tavares, J., Machado, P., Cardoso, A., Pereira, F.B., Costa, E.: On the evolution
of evolutionary algorithms. In: Keijzer, M., O’Reilly, U.-M., Lucas, S., Costa, E.,
Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003, pp. 389–398. Springer, Heidelberg
(2004)

	Evolving Fitness Functions for Mating Selection
	Introduction
	State of the Art
	Other Approaches
	Evolving the Fitness Function

	Circle Packing in Squares
	Mating Selection
	Mating Selection in the Circle Packing in Squares Problem

	Experimental Setup
	Experimental Results
	Conclusions
	References

