
Evolutionary Pointillist Modules: Evolving
Assemblages of 3D Objects

Penousal Machado and Fernando Graça

CISUC, Department of Informatics Engineering, University of Coimbra
Polo II of the University of Coimbra, 3030 Coimbra, Portugal

machado@dei.uc.pt, fejg@student.dei.uc.pt
http://eden.dei.uc.pt/∼machado

Abstract. A novel evolutionary system for the creation of assemblages
of three dimensional (3D) objects is presented. The proposed approach
allows the evolution of the type, size, rotation and position of 3D objects
that are placed on a virtual canvas, constructing a non-photorealistic
transformation of a source image. The approach is thoroughly described,
giving particular emphasis to genotype–phenotype mapping, and to the
alternative object placement strategies. The experimental results pre-
sented highlight the differences between placement strategies, and show
the potential of the approach for the production of large-scale artworks.

Key words: Evolutionary Art, Evolutionary Image Filters, Non-Photorealistic
Rendering, Assemblage

1 Introduction

The main goal of the research presented in this paper is the creation of large-
scale artworks through the assemblage of 3D virtual objects. The main artistic
sources of inspiration for this work are: pointillism, mixed media assemblage of
objects, and ornamentation techniques (e.g. similar to the ones found in Gustav
Klimt works). From a scientific point of view, areas such as evolutionary non-
photorealistic rendering and artistic filter evolution, are of particular relevance.

Our approach can be seen as the evolution of a filter that transforms an
input source image. More exactly, the evolved individuals take as input (through
a terminal node) an image, and produce as output the type, scale, rotation
and placement of the objects, which will be placed on the virtual canvas. The
color of each object is determined by the color of the corresponding pixel of
the source image. In this way, an assemblage of 3D objects, which constitutes
a non-photorealistic portrayal of the source image is obtained. Finally, the 3D
assemblage is rendered using a raytracer.

We begin with a short survey of related work. Next, in the third section, we
make an overview of the different modules of the system. In the fourth section,
we describe the evolutionary module, giving particular emphasis to genotype–
phenotype mapping, and to the description of the object placement strategies.
The experimental results are presented and analyzed in the fifth section. Finally,
we draw some conclusions and discuss aspects to be addressed in future work.



2 Penousal Machado, Fernando Graça

2 Related Work

The use of evolutionary algorithms to create image filters and non-photorealistic
renderings of source images has been explored by several researchers. Focusing
on the works where there was an artistic goal, we can mention the research of:
Neufeld and Ross [1, 2], where Genetic Programming (GP) [3], multi-objective
optimization techniques, and an empirical model of aesthetics are used to au-
tomatically evolve image filters; Lewis [4], which evolved live-video processing
filters through interactive evolution; Machado et al. [5], where GP is used to
evolve image coloring filters from a set of examples; Yip [6], which employs Ge-
netic Algorithms (GAs) to evolve filters that produce images that match certain
features of a target image; Collomosse [7, 8], which uses image salience metrics
to determine the level detail for portions of the image, and GAs to search for
painterly renderings that match the desired salience maps. Several other exam-
ples exist, however a thorough survey is beyond the scope of this article.

3 Overview of the System

Figure 1 presents the architecture of the system, which is composed of two main
components: an Evolutionary module and a Previewing and Rendering module.

The evolutionary module is an expression–based GP [9] interactive breeding
tool. It comprises a Function Visualizer that depicts a grayscale visualization
of the individuals’ expression trees. As is usually the case in expression based
GP, the grayscale value of a pixel at the (x,y) coordinates (in our case, x, y ∈
[−1, 1]) is determined by the output value of the individuals’ expression trees
for (x, y). Each individual is an assemblage of 3D objects. Therefore, usually,
this visualization mode does not provide enough information to allow educated
choices by the user. As such the system also provides a 2D and 3D previewer.

The 2D previewer runs on the master computer. It evaluates the genotypes
and places objects accordingly. However, as the name indicates, it doesn’t take
into consideration the 3D nature of the objects, lighting effects, shadows, etc.
The 3D previewer resorts to a Condor–based [10] render farm. The master cre-
ates and submits several Condor jobs for each individual of the population. Each
job is responsible for: converting the genotype in a Persistence of Vision (POV)
3D scene file1; rendering a slice of the resulting 3D scene using POV-Ray; trans-
ferring the rendered image slice to the master. The master gathers and merges
the rendered image slices, displaying the images as they become available. By
changing the settings of the POV-Ray initialization file, the user can adjust the
quality and size of the renderings, thus also adjusting the speed.

As mentioned above, we use an interactive breeding approach, i.e., instead of
assigning fitness, the user selects two parents, which generate offsprings through
crossover and mutation. We also provide a chromosome replication operator,
which allows the user to select a specific chromosome and transfer mutated
versions of it to all the individuals of the population.
1 http://www.povray.org/.



Evolutionary Pointillist Modules: Evolving Assemblages of 3D Objects 3

Condor Cluster

Evolutionary Module

Current Population

Crossover

Function Visualizer 2D 
Previewer

Genotype to Pov File  
Converter

Mutation

Chromosome
Replication

Genetic 
Operation

Parent 
Selection

Previewing and Rendering Module

3D Previewing /Rendering

Viewing 
mode

Mutation

Povray

PC

Fig. 1. The main modules of the system.

4 Evolutionary Module

In this section, we describe the evolutionary module, focusing on aspects such
as: representation, genetic operators and genotype–phenotype mapping.

4.1 Representation

The genotype of each individual has five chromosomes: <type, rotation, size,
x-position, y-position>. Each chromosome is an expression tree, encoding a par-
ticular aspect of the 3D assemblage of objects, as follows:

<type> – The output value of the type expression tree determines what object,
from a pool of available ones, will be placed;

<rotation> – The rotation that will be applied to the object;
<size> – The scaling applied to the object.
<x-position> and <y-position> – The x and y coordinates where the object

will be placed;

The output of the trees is calculated for each of the pixels of the source image.
In the experiments described in this paper, the function set is:

{sin, cos, max,min, abs,+,−,×,%, diff},

where sin and cos are the usual trigonometric operations; max and min take
two arguments returning, respectively, the maximum and minimum value; abs
returns the absolute value; {+,−,×} are the standard arithmetic operations; %
the protected division operator [3]; diff , a function that takes two arguments
(∆x,∆y) and returns the difference between the value of the (x, y) pixel of the
source image and the pixel at (x + ∆x, y + ∆y). The terminal set used is:

{x, y, image, randomconstants},

where x and y are variables; image is a zero–arity operator that returns the
value of the x, y pixel of the source image; randomconstants are floating point
random values between −1 and 1.



4 Penousal Machado, Fernando Graça

4.2 Genetic Operators

Three genetic operators are used: crossover, mutation and chromosome replica-
tion.

The crossover operator is the standard GP sub-tree exchange crossover [3]. If
we consider two individuals, A and B, this operator will be individually applied
to all chromosome pairs (e.g. (Atype, Btype)), with a given probability for each
pair. The mutation operator randomly replaces a subtree by a randomly created
one. Like for crossover, different mutation probabilities can be specified for each
of the five chromosomes.

The chromosome replication operator was introduced to propagate a specific
chromosome throughout the entire population. E.g., the user may feel partic-
ularly pleased with the rotations applied to the objects in one individual, and
wish to use the same rotation expression in all individuals. Alternatively, the
user may wish to test small variations of a specific chromosome without chang-
ing the remaining ones. To address these needs, the chromosome replication
operation copies mutated versions of the chromosome, selected by the user, to
all individuals of the population.

4.3 Genotype–Phenotype Mapping

In this section, we describe the genotype–phenotype mapping procedure. To
illustrate our explanation we resort to: the genotype presented in Fig. 2, and
the source image presented in Fig. 3(a). For the time being, we will assume that
the objects are placed following a regular 32 × 32 grid, and that three types of
objects are available: squares, circles and triangles.

Type Rotation Size X-position Y-position

max(1.79,+(
image,x))

min(x,-(1.8,
sin(max(y,1.9)
)))

min(y,-(min
(x,x),sin(max
(x,1.9))))

abs(x) -(sin(y),x)

Fig. 2. Chromosomes of a sample genotype and the visualization of the corresponding
functions over [−1, 1], considering the source image presented in Fig. 3(a)
.

The first chromosome, type, determines which type of object is placed. In
this case, values in ]0, 0.33] correspond to cubes, in [0.33, 0.66] to spheres, and in
[0.66, 1[ to triangular shapes. The application of this chromosome, alone, would
produce the 3D scene depicted in Fig. 4(a). Likewise, the rotation determines the



Evolutionary Pointillist Modules: Evolving Assemblages of 3D Objects 5

(a) (b) (c) (d)

Fig. 3. (a) Source Image; (b) to (d) Dither masks for stages 1 to 3.

(a) (b) (c) (d)

Fig. 4. Images resulting from the application of type (a), rotation (b), size (c), and
<type, rotation, size> (d) to the source image of Figure 3(a), assuming a regular grid
placement of the objects.

rotation that will be applied to each object, and size determines the scaling that
will be applied to the object. Figures 4(b) and (c) depict the results of indepen-
dently applying these chromosomes, using, respectively, triangular shapes and
cubes for easier viewing. The joint application of type, rotation and size would
produce the 3D scene presented in Fig. 4(d).

Object Placement So far we considered that the objects are placed on a
regular grid. This type of placement has characteristics that we wish to avoid,
namely: i) the regularity of the grid can become a visual distraction; ii) it only
allows a homogeneous distribution of the objects, making it impossible to ignore
regions of the image, and, to clutter objects on certain regions. To overcome this
limitation, we introduced the x- and y-position chromosomes, which determine
the coordinates where the objects are placed (see Fig. 5(a)).

The number of objects placed is also relevant. To address this issue, we resort
to masks. A modified version of a space-filling curve dither algorithm [11, 12] is
applied to the source image. By establishing different parameter settings, three
dither masks are created (see Fig. 3). The phenotype is rendered in three stages,
each using a different dither mask. In each stage, the positions of the objects are
calculated using the x- and y-position chromosomes, but an objects is only placed
if the mask allows it. In Fig. 5(b), we present the 3D scene corresponding to each
rendering stage, and in Fig. 5(c), the one resulting from the combination of the
three stages. The color of each object is determined by the color of the area
of the source image where the object is placed, which tends to avoid excessive
distortions of the original image.



6 Penousal Machado, Fernando Graça

(a) (b) (c)

Fig. 5. (a) 3D scene resulting from the application of <type, scale, rotation, x, y>; (b)
3D scene resulting from the stage 1, 2 and 3 dither masks; (c) 3D scene resulting from
the combination of the three rendering stages.

Fig. 6. Source image and corresponding dither masks.

5 Experimental Results

The analysis of the experimental results attained by evolutionary art systems,
specially user driven ones, entails a high degree of subjectivity. In our case, there
is an additional difficulty — the approach is thought for large-scale formats.
Therefore, is close to impossible to adequately convey the real look of the evolved
images in the space and format available for their presentation.

Considering these difficulties, we focus on the comparison between different
object placement strategies, since an analysis of the effects of type, rotation and
size would require a higher level of detail. Due to space restrictions and to the
visual nature of the results, we chose to focus on a single evolutionary run.

5.1 Experimental Setup

We used the following experimental settings: Function–set = {sin, cos, max,
min, abs, +, −, ×, %, diff}; Terminal–set = {x, y, image, randomconstants}
(see Sect. 4.1); Population size = 20; Number of Generations = 40; Crossover
probability = 0.6; random–subtree mutation probability = 0.2; node–change mu-
tation probability = 0.02 per node; Population initialization method = Ramped
half–and–half.



Evolutionary Pointillist Modules: Evolving Assemblages of 3D Objects 7

Fig. 7. Pool of objects used in stages 1–3. When no dither masks are used the object
pool is equal to the one of stage 2.

The experiments were performed on an Intel Core2Duo, 2.8GHz, Windows
master computer. During the course of evolution, an heterogeneous Condor clus-
ter – with 40-70 available machines – was used for the 3D previewing of the pop-
ulations. To produce large-scale renderings, we used a dedicated Condor cluster
with networked file system, composed of 24 Intel Core2Duo, 2.8GHz, running
Ubuntu. For previewing, we used a resolution of 800×600 pixels, and the images
were rendered without anti-aliasing; the resolution of the large-scale renderings
ranged from 3200 × 2400 to 16000 × 12000. Typically, previewing took 15 to
30 minutes, and large-scale rendering took 4 to 80 hours (depending on the
resolution and number of objects).

In Fig. 6, we present the source image used in the course of these experiments,
and the corresponding dither masks for three stage rendering. Figure 7 depicts
the pool of objects used in each of the rendering stages, and the associated
grayscale gradients. When we follow a object placement strategy that doesn’t
resort to masks (regular grid or non–masked x- and y-position chromosomes), the
object pool is equal to the one of stage 2.

5.2 Results and Analysis

Figure 8, displays the 3D preview of individuals 1–6 of the 1st and the 40th
population rendered using: regular grid placement; evolved x- and y-position
chromosomes; three stage rendering with evolved x- and y-position chromosomes
and dither masks.

In general, all object placement strategies produced interesting images. Dur-
ing the evolutionary run, the selections of the user were based on the dithered
previews. As such, a comparison of object placement approaches, based on the
individuals of 40th population, would be biased. Therefore, the differences be-



8 Penousal Machado, Fernando Graça

Regular grid placement

Population 1 Population 40

Active x- and y-position chromosomes

Population 1 Population 40

Three stage rendering with dither masks and evolved x- and y-position chromosomes

Population 1 Population 40

Fig. 8. The first 6 individuals of populations 1 and 40 rendered using different object
placement strategies.



Evolutionary Pointillist Modules: Evolving Assemblages of 3D Objects 9

tween placement strategies are better perceived by observing the images of the
1st population.

The limitations of regular grid placement are not visible in this small-scale
renderings. The artificial vertical and horizontal artifacts induced by regular
placement only become a distraction at larger resolutions. The variations in size
and rotation of the objects also help overcoming this limitation, producing, for
instance, irregular image boundaries.

As it can be observed, evolving the coordinates of the objects can lead to pe-
culiar images, where significant portions of the image are missing. This expected
outcome, is particularly frequent in the beginning of the evolutionary run.

The images produced by three stage rendering with dither masks were the
ones that better matched our expectations. The introduction of these masks
allowed the “abstraction” of regions of the image, providing the heterogenous
level of detail that we wanted.

The comparison of the dithered renderings of the 1st and 40th population
shows that there is less variability in the 40th population, indicating some degree
of convergence. Unfortunately, the size of the images presented doesn’t allow
the reader to observe the subtler differences among images, in what concerns
object type, rotation, size and placement. Nevertheless, it is safe to say that,
according to the opinion of the users guiding the experiment, the images of the
40th population are significantly more expressive than the ones from the 1st. In
other words, the evolutionary algorithm, guided by the user, was able to find
regions of the search space that were considered more promising.

Larger versions of some of the individuals, the results of applying a given
individual to different source images, and several other images can be found
online at: http://evolving-assemblages.dei.uc.pt

6 Conclusions and Future Work

We presented a novel evolutionary approach for the generation of assemblages of
3D objects, and compared the results attained with three different object place-
ment strategies. The experimental results show the potential of the approach,
indicating that the proposed three stage rendering, with evolved x- and y-position
chromosomes and dither masks, achieves better results.

One of the main limitations of our approach is the computational effort re-
quired to preview and render the individuals. To overcome it, we used a Condor-
based cluster to distribute the rendering tasks. Nevertheless, this process is still
time consuming, which becomes a limitation (specially for previewing since final
renderings can be made offline). In the experiments presented, we used fairly
complex objects. Using simplified versions of the same objects would greatly re-
duce previewing time. This is one one of the aspects that will be addressed in
the future.

Although the object placement strategies we explored were able to produce
interesting results, evolving the masks, would allow greater flexibility. Addition-
ally, image salience analysis can play an important role. The identification of



10 Penousal Machado, Fernando Graça

salient detail could be used to guide object placement, in order to promote the
placement of objects in areas with salient detail.

Finally, a larger set of experiments – with different types of source images
and object pools – is also necessary to better assess the strengths and weakness
of the approach.

Acknowledgments. We would like to express our gratitude towards Jennifer
Santos, which posed for the photographs employed in this paper. We also ac-
knowledge the contribution of Paulo Marques provided valuable support in the
setup of the clusters.

References

1. Ross, B.J., Ralph, W., Hai, Z.: Evolutionary image synthesis using a model
of aesthetics. In Yen, G.G., Lucas, S.M., Fogel, G., Kendall, G., Salomon, R.,
Zhang, B.T., Coello, C.A.C., Runarsson, T.P., eds.: Proceedings of the 2006 IEEE
Congress on Evolutionary Computation, Vancouver, BC, Canada, IEEE Press
(2006) 1087–1094

2. Neufeld, C., Ross, B., Ralph, W.: The evolution of artistic filters. In Romero, J.,
Machado, P., eds.: The Art of Artificial Evolution. Springer (2007 (In Press))

3. Koza, J.R.: Genetic Programming: On the Programming of Computers by Natural
Selection. MIT Press, Cambridge, MA (1992)

4. Lewis, M.: Aesthetic video filter evolution in an interactive real-time framework.
In: Applications of Evolutionary Computing, EvoWorkshops2004: EvoBIO, Evo-
COMNET, EvoHOT, EvoIASP, EvoMUSART, EvoSTOC. Volume 3005 of LNCS.,
Coimbra, Portugal, Springer Verlag (2004) 409–418

5. Machado, P., Dias, A., Cardoso, A.: Learning to colour greyscale images. The
Interdisciplinary Journal of Artificial Intelligence and the Simulation of Behaviour
– AISB Journal 1 (2002) 209–219

6. Yip, C.: Evolving Image Filters. Master’s thesis, Imperial College of Science,
Technology, and Medicine (2004)

7. Collomosse, J.P., Hall, P.M.: Genetic paint: A search for salient paintings. In: Ap-
plications of Evolutionary Computing, EvoWorkshops 2005, Lausanne, Switzerland
(2005) 437–447

8. Collomosse, J.P.: Supervised genetic search for parameter selection in painterly
rendering. In: Applications of Evolutionary Computing, EvoWorkshops 2006, Bu-
dapest, Hungary (2006) 599–610

9. Sims, K.: Artificial evolution for computer graphics. ACM Computer Graphics 25
(1991) 319–328

10. Tannenbaum, T., Wright, D., Miller, K., Livny, M.: Condor – a distributed job
scheduler. In Sterling, T., ed.: Beowulf Cluster Computing with Linux. MIT Press
(2001)

11. Velho, L., de Miranda Gomes, J.: Digital halftoning with space filling curves.
SIGGRAPH Comput. Graph. 25 (1991) 81–90

12. Shiraishi, M., Yamaguchi, Y.: An algorithm for automatic painterly rendering
based on local source image approximation. In: NPAR ’00: Proceedings of the
1st international symposium on Non-photorealistic animation and rendering, New
York, NY, USA, ACM (2000) 53–58


