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Abstract 
 

This paper is about the colouring of greyscale images. More specifically, we address the problem of learning to colour greyscale 
images from a set of examples of true colour ones. We employ Genetic Programming to evolve computer programs that take as input the 
Lightness channel of the training images and output the Hue channel. The best programs evolved can then be used to give colour to grey-
scale images. Due to the computational complexity of the learning task, we use a genome compiler system, GenCo, specially suited to 
image processing tasks. 

 
 
1   Introduction 
 
The work presented here is part of a wider research pro-
ject, NEvAr, whose aim is to build a constructed artist 
(i.e. a program that generates artworks autonomously).  
 
NEvAr is an Evolutionary Art Tool inspired on the work 
of K. Sims (1991). It relies on Genetic Programming 
(GP) to evolve populations of images, based on aesthetic 
principles. Fitness assignment plays, like in most Evolu-
tionary Computation systems, a key role since it guides 
the evolutionary process. 
 
NEvAr can be used as an Interactive Evolution tool. In 
this mode of execution the user supplies the fitness values 
to the evolved images. It can also be used as a fully 
autonomous system. In this case fitness is assigned 
through an explicit fitness function, which takes into con-
sideration several complexity estimates of the images 
(Machado, 2002). 
 
However, the fitness assignment procedure only takes 
into account the lightness information of the images, dis-
carding the hue and saturation information. Therefore, in 
this mode of execution, we are limited to greyscale im-
ages. A full description of NEvAr and of the automatic 
fitness assignment can be found in (Machado, 2002). 
 
There are good theoretical and artistic reasons to deem 
colour less important than lightness. The development of 
the colouring procedures of systems like AARON 
(Cohen, 1995) is, to some extent, based on this notion. 
However, this collides, at least apparently, with the im-

portance given to colour by some of the most prominent 
painters (e.g. (Kandinsky, 1991)). Moreover, NEvAr’s 
limitation to greyscale images, in its autonomous version, 
was frustrating, to say the least. In this paper we address 
the problem of giving colour to greyscale images. 
 
An analysis of the role of colour and the way colour is 
assigned, particularly in abstract art, leads to the conclu-
sion that artists (certainly not all, but at least a significant 
proportion) usually work with a limited colour palette, 
and that the spatial relation between colours usually fol-
lows some rules. This is consistent with the view that 
each artist constructs its own artistic language, which 
complies with an implicit grammar. It is also consistent 
with the approach used in AARON to colour its drawings 
(Cohen, 1995; Cohen, 1999). 
 
The idea of creating a program to give colour to the grey-
scale images created by NEvAr emerged naturally. 
Unfortunately this poses several problems. Our system is 
based on a non symbolic approach and produces bitmap 
images, hence there is no clear definition of closed forms, 
shapes, etc. 
 
Therefore, although we could define a palette to work 
with, assigning the colours of that palette to specific 
forms would be difficult since we have no forms to begin 
with. Even assuming that the forms could be properly 
identified by some sort of pre-processing method, assign-
ing the right colour to each shape and keeping a proper 
spatial relation among colours would still be a problem, 
due to the unstructured nature of the output. 
 



Additionally, the creation of a colouring system, by itself, 
doesn’t appear to be an easy task, involving the choice of 
an adequate set of palettes, establishing a consistent col-
ouring grammar, etc. 
 
Taking these facts into consideration, and also the fact 
that the generality of this type of approach would be lim-
ited, we decided to abandon this idea. Instead, we are 
trying to create a system that learns to colour images from 
a set of training ones. 
 
This approach has, potentially, several advantages over a 
built-in colouring procedure, namely: we don’t need to 
code by hand a set of colouring rules; the results of the 
system are less predictable; we can use paintings made by 
well-known artists as training set, hence learning to col-
our images according to their style. 
 
Additionally, it’s also an indirect way of testing if the 
colouring procedures followed by some artists can be 
formally expressed. 
 
The paper is structured as follows: In the next section we 
describe our current approach to colouring images; In 
Section 3, we present some experimental results attained 
by this approach and make a brief analysis; finally, in 
section 4, we will draw some conclusions and present our 
ideas for future research. 
 
2   Our Approach 
 
GP is one of the most recent Evolutionary Computation 
techniques. Its goal is to evolve populations of computer 
programs, which improve automatically as evolution pro-
gresses (Banzhaf 1998). 
 
Due to the outstanding influence of the work of Koza 
(1992) it is common, within the Machine Learning com-
munity, to associate the term GP to the evolution of tree 
structures. In this paper we follow this “classical” defini-
tion. Therefore, when we talk about GP we are talking 
about the evolution of tree structures, which are built 
from a set of functions (f-set) and terminals (t-set). The 
internal nodes of the tree are members of the f-set, and 
the leafs are members of the t-set. 
 
In our approach we use GP to evolve populations of pro-
grams that give colour to greyscale images. We start by 
selecting a true-colour training image (or set of images), 
which is split in its Lightness, Hue and Saturation chan-
nels (see Fig. 1). 
 

The evolved programs take the greyscale image corre-
sponding to the Lightness channel as input, and output a 
greyscale image. The output is compared with the Hue 
channel of the training image, the closer the output is to 
the desired one, the higher the fitness. The same proce-
dure can be applied using the Saturation channel, to 
evolve programs that generate the saturation information. 
 

 
 

   
 

Figure 1:  The original image, and the corresponding 
Lightness, Hue and Saturation channels. 
 
As evolution progresses, the quality of the individuals 
increases and, eventually, we find programs which gener-
ate colourings very close to the original ones. 
 
It is important to notice, however, that this is not enough 
– the idea is to use these programs to give colour to dif-
ferent images. The fact that a program produces an output 
that exactly matches the training one does not guarantee 
that it will produce an interesting colouring on different 
images. In other words, the evolved programs must gen-
eralise well. To promote their generalising capabilities, 
we took some precautions in the selection of the function 
set and also in the construction of the fitness function. In 
the remainder of this section, we describe the options 
taken and give justification for these options. 
 
2.1   Implementation details 
 
A first word goes to how the output of each program is 
calculated: given a particular individual, it is run for each 
of the pixels belonging to the training image (or images). 
Therefore, assuming a training image of 100*100 pixels, 
each individual must be run 10000 times. Each execution 
of an individual implies the transversal of its tree and 
calling, for each node the corresponding function. 
 
When we take into account that the individuals can easily 
reach sizes of several thousand nodes, and that GP popu-



lations usually contain several hundred individuals, the 
conclusion that the execution step is of considerable 
computational weight clearly follows. In order to mini-
mize this problem we implemented our system with 
GenCo, a Genome Compiler system specially suited for 
image processing tasks (Machado, 2001). 
 
A Genome Compiler is a GP system that makes online 
compilation of the evolved programs. In situations like 
the one previously described, i.e. in which each individ-
ual must be executed several times, this type of system 
can provide significant speed improvements, since each 
individual is compiled once and the resulting machine 
code executed several times (10000 considering a train-
ing image of 100*100 pixels). In this scenario, genome 
compiler systems are, typically, 50 to 100 times faster 
than standard C based GP implementations (Fukunaga 
1998; Nordin 1994; Nordin 1995; Machado 2001). 
 
Next we describe the design options made in the selection 
of the function and terminal set, and the reasons that justi-
fied them. 
 
2.1.1   Function and Terminal Set 
 
Our problem has some similarities with the symbolic re-
gression of functions or images (Nordin 1995; Koza 
1992). There are, however, some important differences. 
In a symbolic regression task, one would usually resort to 
a function set composed by the arithmetic operations and 
the if statement, and use as terminal set the variables X, 
Y. This type of set-up unavoidably results in programs 
whose output depends exclusively on the coordinates of 
the pixel being calculated. 
 
In an attempt to solve this problem, we added to the ter-
minal set the lightness value of the pixel being evaluated, 
thus giving more information to the program. This allows 
the output to vary in accordance to changes on the light-
ness channel. Additionally, we also added the lightness 
values of the adjacent pixels, so that the programs have 
access to the surrounding context of each pixel. 
 
In what concerns the function set, we decided to keep the 
“traditional” one. The reason for this choice is threefold: 
it was deemed sufficient for a first approach; the inclu-
sion of more complex functions (e.g. for-next loops, or 
high level constructs) would severely increase the 
computational weight of the evaluation step; the inclusion 
of this type of functions doesn’t necessarily benefit the 
evolutionary process, in fact, the opposite can, and 
frequently happens (see, e.g., (Banzhaf, 1998)). 
 

Taking all this factors in consideration we used the fol-
lowing function and terminal sets: 
 
• F-set = {+, -, *, %, if}, where % stands for the pro-

tected division operator, and if for the if-less-then-
else statement (Koza, 1992) 
 

• T-set = {X, Y, A..I}, where X, Y are variables corre-
sponding to the coordinates of the pixel, and A..I are 
the lightness values of the pixel being calculated and 
of the surrounding ones. 

 
The results achieved were very disappointing, basically 
because the behaviour of programs continued to be de-
termined, almost exclusively, by the values of the X and 
Y variables. This is clearly undesirable, since it means 
that we are not evolving programs that give colour to 
images according to their lightness channel, we are 
merely evolving a function that, when applied over an 
interval of X, Y values, generates the hue channel of the 
training image. Thus, we are only memorizing the train-
ing instance(s). 
 
Taking the X, Y variables from the terminal set resulted 
in having poor evolution, and convergence to trivial and 
uninteresting colourings (e.g. having as a result the pre-
dominant colour of the training image, or always assign-
ing to a specific lightness value the same hue or satura-
tion). 
 
It was clear that the variables X, Y were not producing 
any desirable impact on the programs. Therefore, we de-
cided to delete them from the terminal set. It was also 
clear that without these variables the programs hadn’t 
enough information to determine the appropriate colour 
for each pixel, since the programs only have a local view 
of the lightness channel (the pixel being evaluated and the 
nine surrounding ones). To compensate this lack of in-
formation, we introduced a new function, get(∆x,∆y), 
whose behaviour can be described as follows: assuming 
that the current pixel has the coordinates a, b, it returns 
the lightness value of the pixel situated on (a+∆x, b+∆y). 
 
Since the get function provides a way to access the light-
ness values of the surrounding pixels, there was no reason 
to make these values as part of the terminal set. Accord-
ingly, our function and terminal sets became: 
 
• F-set = {+, -, *, %, if, get} 

 
• T-set = {E}, where E stands for the lightness value of 

the pixel being evaluated. 
 



This set-up proved to be adequate, allowing the evolution 
of suitable colouring programs with good generalization 
capabilities, as will be shown in section 3. In the follow-
ing section we focus on the used fitness functions, and on 
the grounds for using them. 
 
2.1.2   Fitness Functions 
 
We start by describing the fitness function used when we 
are evolving the saturation channel of an image from the 
lightness one. In this situation we use the root mean 
square error between the desired output and the real one 
to assign fitness, i.e. considering that I holds the desired 
saturation values and that P is the output of a program the 
fitness is given by the following formula: 
 
 

( )
max_ max_

2

1 1

1

( , ) ( , )
1

max_ max_

x y

x y

s
I x y P x y

x y
= =

=
−

+
×

∑ ∑

 (1) 

 
When we are trying to evolve the Hue information, this 
formula must be slightly altered due to the circular nature 
of the Hue channel. Assuming that the images take values 
in the [0, 1] interval, the above formula yields a maxi-
mum distance when I(x,y) = 1 and P(x,y) = 0 (or vice-
versa). However, in this situation the difference in hue 
would be quite small and probably unnoticeable to a hu-
man observer. Therefore, we use the following formula: 
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where I holds the desired Hue values, P the program’s 
output, and minθ returns the minimum angle distance be-
tween the two values. This fitness function can be further 
improved if we take into consideration that the perceived 
difference in hue depends on the lightness of the pixel 
(e.g. if the pixel as lightness equal to zero it will always 
be black, no matter what hue we assign to it; even when 
the lightness is only close to zero, giving to that pixel a 
hue different than the desired one will hardly be notice-
able to a human viewer). Taking this into account, and 
considering that L holds the lightness information we 
obtain the following formula: 
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The tests conducted using formulas 2 and 3 as fitness 
functions yield deceptively good results. In the early steps 
of evolution fitness increases steadily and swiftly, giving 
the impression that an adequate colouring program will 
be easily found. However, after a few hundred genera-
tions, the improvements in fitness drop suddenly and evo-
lution seems to halt. This wouldn’t be a cause for concern 
if the evolved programs solved the problem at hand satis-
factorily. To some extent they do, since they usually have 
high fitness values, relatively close to the maximum at-
tainable fitness. The problem is that a qualitative analysis 
of the results reveals that the colourings are usually unin-
teresting from an aesthetic perspective – typically, only a 
small subset of the original colours is used, resulting in 
the loss of nuances that make the original colouring work. 
This situation becomes more severe when the training 
images have a large area filled with a particular hue 
value, and other areas filled with hue values close to that 
one. 
 
To better explain the problem we will use an example: 
consider, for instance, a landscape painting mostly filled 
with green (for the grass and trees) and with a blue sky 
(green and blue are relatively close in the colour spec-
trum); a program that outputs the hue corresponding to 
the green colour will have a relatively good fitness, since 
it is not penalised in the dominant green area of the image 
and only suffers a little penalisation on the blue area. To 
make things even worse, such a program is easy to 
evolve, so it will be found in a small number of genera-
tions. Changing it by mutation or crossover will tend to 
decrease its fitness, meaning that the fittest descendents 
will tend to be similar to it. Therefore, in a few genera-
tions the population will be dominated by similar pro-
grams, which will begin to increase in their size to protect 
themselves from destructive crossover and mutation; soon 
the increase in size becomes exponential and evolution 
becomes impossible (the exponential growth of program 
size is usually called bloat problem; a more detailed ex-
planation of why bloat occurs can be found in (Banzhaf, 
1997)). 
 
In an attempt to force our system to evolve more interest-
ing colourings, covering a wider colour spectrum, we 
decided to add another factor to our fitness function. A 
description of the procedure used to calculate that factor 
follows. 
 



We start by taking the I image (that holds the desired hue 
values) and decrease its colour depth, using the optimised 
median cut algorithm, obtaining an image I’ composed by 
only 16 different hue values (v1…v16). Then we count 
how many pixels exist of each different hue and store the 
pixel count values in an array, AI’. For each pixel of im-
age P, which holds the output of the program, we deter-
mine the closest hue value, vi, and the distance ∆v be-
tween the pixel value and vi. We add to AP’[i] the value 1-
∆v, thus if the pixel’s hue matches exactly one of the six-
teen hues present in the training image we add one, when 
it doesn’t match exactly we add slightly less. After per-
forming this procedure for all the pixels of the output 
image we compute the following formula: 
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Thus, we are basically comparing the number of pixels of 
each hue value of the output and target image. Returning 
to our previous example of the green and blue landscape, 
if the output image has the same amount of blue pixels 
and green pixels than the original (and also assuming that 
it is the exact blue and green tone), formula 4 will give a 
value close to one. However, if the output image is domi-
nated by the green colour there will be a huge discrep-
ancy between the amount of green and blue of the two 
images, and therefore Hb will be close to zero. Notice 
that, in what Hb is concerned, the placement of the col-
ours has no real influence on the resulting value. To fur-
ther force a wider coverage of the colour spectrum, we 
also used the following modification to this formula: 
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which ensures that all sixteen different hues have the 
same weight in the calculation. Resorting again to our 
example, and considering that we have a small yellow 
area (for the sun), when we use formula 5 having the cor-
rect number of yellow pixels is as important as having the 
correct number of blue or green ones. In the next section 
we will present some of the experimental results 
achieved. 
 

3   Experimental Results 
 
To test our approach we conducted a series of experi-
ments. As training images, we used some of the early 
works of Wassily Kandinsky. The images where reduced 
to the size of 96*96 pixels in order to allow a faster evo-
lution. Although our system may use several training im-
ages at the same time, we haven’t taken advantage of this 
possibility so far. The results presented in this section 
concern the evolution of programs that take the lightness 
channel of an image as input and give the hue channel as 
output. As fitness we used Ha’+Hb’. 
 

a)  a’)  

b)  b’)  

c)  c’)  

d)  d’)  

e)  e’)  
 
Figure 2: On the left column the original images, on right 
the images resulting from the application of the best indi-
vidual of each run to the lightness channel of the training 

image. 
 



In Fig. 2 we present some of the training images, and the 
images generated by the evolved programs1. 
 
It is clear from the results presented that we can achieve 
images very close to the original ones. However, what is 
really important to our goal is accessing how well do the 
evolved programs perform when applied to images not 
involved in their training, i.e. their generalisation capa-
bilities. In Fig. 3 we present some results achieved with 
this mode of operation. 
 

   
 

   
 

   
 

   
 

Figure 3: The images on the first column result from the 
application of the program that generated the image a’ 

from Fig. 2; on the second column, images resulting from 
the application of b’; on the third column images result-

ing from the application of c’. 
 
We consider these results to be extremely promising. 
Some of the colourings presented in Fig. 3 are quite close 
to the original ones and, additionally, in some cases, al-
though significantly different, they are still interesting 

                                                 
1 A colour version of the paper can be found in: 
http://www.dei.uc.pt/~machado/research/research.htm 

colourings. In order to allow a more equitable assessment 
of the results, we don’t present the original image corre-
sponding to the fourth row of Fig. 3. 
 
4   Conclusions and further work 
 
In this paper we presented our ongoing research whose 
goal is to learn to colour greyscale images from a set of 
training instances. This effort is part of a wider research 
project that aims at building a fully autonomous con-
structed artist. 
 
The results achieved so far concern, mostly, the evolution 
of programs that generate the hue channel from the light-
ness one. The experiments performed on the evolution of 
programs to generate the saturation channel, seem to in-
dicate that this task is quite simpler. Nevertheless, the 
replacement of the original saturation channel by one 
generated through a program will unavoidably imply the 
introduction of further noise. At the time of writing we 
can’t access exactly how much this will affect the quality 
of the generated colourings (although we foresee little 
impact). 
 
There is also the need to conduct additional experiments, 
specially to use several training images simultaneously, 
which will hopefully increase the generalization capabili-
ties of the evolved programs. Another aspect that can be 
improved is the fitness function, we are currently altering 
it so that it also takes into account the vicinity relations 
between areas of colour, once again the idea is to pro-
mote the evolution of programs that assign colour based 
in more general concepts. 
 
A final word goes to other types of application of the 
proposed techniques, for instance, the colouring of black 
and white movies. Assuming that one of the frames is 
coloured (either by hand or by some other method) it 
should be possible to evolve a program that gives correct 
colours to the surrounding frames. 
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