

Giving Colour to Images

Penousal Machado1,2; André Dias2; Nuno Duarte2; Amílcar Cardoso2
1 Instituto Superior de Engenharia de Coimbra; Quinta da Nora, 3030 Coimbra, Portugal;
2 CISUC – Center for Informatics and Systems, Univ. Coimbra, 3030 Coimbra, Portugal;

machado@dei.uc.pt; adias@student.dei.uc.pt; nduarte@student.dei.uc.pt; amilcar@dei.uc.pt;

Abstract

This paper is about the colouring of greyscale images. More specifically, we address the problem of learning to colour greyscale
images from a set of examples of true colour ones. We employ Genetic Programming to evolve computer programs that take as input the
Lightness channel of the training images and output the Hue channel. The best programs evolved can then be used to give colour to grey-
scale images. Due to the computational complexity of the learning task, we use a genome compiler system, GenCo, specially suited to
image processing tasks.

1 Introduction

The work presented here is part of a wider research pro-
ject, NEvAr, whose aim is to build a constructed artist
(i.e. a program that generates artworks autonomously).

NEvAr is an Evolutionary Art Tool inspired on the work
of K. Sims (1991). It relies on Genetic Programming
(GP) to evolve populations of images, based on aesthetic
principles. Fitness assignment plays, like in most Evolu-
tionary Computation systems, a key role since it guides
the evolutionary process.

NEvAr can be used as an Interactive Evolution tool. In
this mode of execution the user supplies the fitness values
to the evolved images. It can also be used as a fully
autonomous system. In this case fitness is assigned
through an explicit fitness function, which takes into con-
sideration several complexity estimates of the images
(Machado, 2002).

However, the fitness assignment procedure only takes
into account the lightness information of the images, dis-
carding the hue and saturation information. Therefore, in
this mode of execution, we are limited to greyscale im-
ages. A full description of NEvAr and of the automatic
fitness assignment can be found in (Machado, 2002).

There are good theoretical and artistic reasons to deem
colour less important than lightness. The development of
the colouring procedures of systems like AARON
(Cohen, 1995) is, to some extent, based on this notion.
However, this collides, at least apparently, with the im-

portance given to colour by some of the most prominent
painters (e.g. (Kandinsky, 1991)). Moreover, NEvAr’s
limitation to greyscale images, in its autonomous version,
was frustrating, to say the least. In this paper we address
the problem of giving colour to greyscale images.

An analysis of the role of colour and the way colour is
assigned, particularly in abstract art, leads to the conclu-
sion that artists (certainly not all, but at least a significant
proportion) usually work with a limited colour palette,
and that the spatial relation between colours usually fol-
lows some rules. This is consistent with the view that
each artist constructs its own artistic language, which
complies with an implicit grammar. It is also consistent
with the approach used in AARON to colour its drawings
(Cohen, 1995; Cohen, 1999).

The idea of creating a program to give colour to the grey-
scale images created by NEvAr emerged naturally.
Unfortunately this poses several problems. Our system is
based on a non symbolic approach and produces bitmap
images, hence there is no clear definition of closed forms,
shapes, etc.

Therefore, although we could define a palette to work
with, assigning the colours of that palette to specific
forms would be difficult since we have no forms to begin
with. Even assuming that the forms could be properly
identified by some sort of pre-processing method, assign-
ing the right colour to each shape and keeping a proper
spatial relation among colours would still be a problem,
due to the unstructured nature of the output.

Additionally, the creation of a colouring system, by itself,
doesn’t appear to be an easy task, involving the choice of
an adequate set of palettes, establishing a consistent col-
ouring grammar, etc.

Taking these facts into consideration, and also the fact
that the generality of this type of approach would be lim-
ited, we decided to abandon this idea. Instead, we are
trying to create a system that learns to colour images from
a set of training ones.

This approach has, potentially, several advantages over a
built-in colouring procedure, namely: we don’t need to
code by hand a set of colouring rules; the results of the
system are less predictable; we can use paintings made by
well-known artists as training set, hence learning to col-
our images according to their style.

Additionally, it’s also an indirect way of testing if the
colouring procedures followed by some artists can be
formally expressed.

The paper is structured as follows: In the next section we
describe our current approach to colouring images; In
Section 3, we present some experimental results attained
by this approach and make a brief analysis; finally, in
section 4, we will draw some conclusions and present our
ideas for future research.

2 Our Approach

GP is one of the most recent Evolutionary Computation
techniques. Its goal is to evolve populations of computer
programs, which improve automatically as evolution pro-
gresses (Banzhaf 1998).

Due to the outstanding influence of the work of Koza
(1992) it is common, within the Machine Learning com-
munity, to associate the term GP to the evolution of tree
structures. In this paper we follow this “classical” defini-
tion. Therefore, when we talk about GP we are talking
about the evolution of tree structures, which are built
from a set of functions (f-set) and terminals (t-set). The
internal nodes of the tree are members of the f-set, and
the leafs are members of the t-set.

In our approach we use GP to evolve populations of pro-
grams that give colour to greyscale images. We start by
selecting a true-colour training image (or set of images),
which is split in its Lightness, Hue and Saturation chan-
nels (see Fig. 1).

The evolved programs take the greyscale image corre-
sponding to the Lightness channel as input, and output a
greyscale image. The output is compared with the Hue
channel of the training image, the closer the output is to
the desired one, the higher the fitness. The same proce-
dure can be applied using the Saturation channel, to
evolve programs that generate the saturation information.

Figure 1: The original image, and the corresponding
Lightness, Hue and Saturation channels.

As evolution progresses, the quality of the individuals
increases and, eventually, we find programs which gener-
ate colourings very close to the original ones.

It is important to notice, however, that this is not enough
– the idea is to use these programs to give colour to dif-
ferent images. The fact that a program produces an output
that exactly matches the training one does not guarantee
that it will produce an interesting colouring on different
images. In other words, the evolved programs must gen-
eralise well. To promote their generalising capabilities,
we took some precautions in the selection of the function
set and also in the construction of the fitness function. In
the remainder of this section, we describe the options
taken and give justification for these options.

2.1 Implementation details

A first word goes to how the output of each program is
calculated: given a particular individual, it is run for each
of the pixels belonging to the training image (or images).
Therefore, assuming a training image of 100*100 pixels,
each individual must be run 10000 times. Each execution
of an individual implies the transversal of its tree and
calling, for each node the corresponding function.

When we take into account that the individuals can easily
reach sizes of several thousand nodes, and that GP popu-

lations usually contain several hundred individuals, the
conclusion that the execution step is of considerable
computational weight clearly follows. In order to mini-
mize this problem we implemented our system with
GenCo, a Genome Compiler system specially suited for
image processing tasks (Machado, 2001).

A Genome Compiler is a GP system that makes online
compilation of the evolved programs. In situations like
the one previously described, i.e. in which each individ-
ual must be executed several times, this type of system
can provide significant speed improvements, since each
individual is compiled once and the resulting machine
code executed several times (10000 considering a train-
ing image of 100*100 pixels). In this scenario, genome
compiler systems are, typically, 50 to 100 times faster
than standard C based GP implementations (Fukunaga
1998; Nordin 1994; Nordin 1995; Machado 2001).

Next we describe the design options made in the selection
of the function and terminal set, and the reasons that justi-
fied them.

2.1.1 Function and Terminal Set

Our problem has some similarities with the symbolic re-
gression of functions or images (Nordin 1995; Koza
1992). There are, however, some important differences.
In a symbolic regression task, one would usually resort to
a function set composed by the arithmetic operations and
the if statement, and use as terminal set the variables X,
Y. This type of set-up unavoidably results in programs
whose output depends exclusively on the coordinates of
the pixel being calculated.

In an attempt to solve this problem, we added to the ter-
minal set the lightness value of the pixel being evaluated,
thus giving more information to the program. This allows
the output to vary in accordance to changes on the light-
ness channel. Additionally, we also added the lightness
values of the adjacent pixels, so that the programs have
access to the surrounding context of each pixel.

In what concerns the function set, we decided to keep the
“traditional” one. The reason for this choice is threefold:
it was deemed sufficient for a first approach; the inclu-
sion of more complex functions (e.g. for-next loops, or
high level constructs) would severely increase the
computational weight of the evaluation step; the inclusion
of this type of functions doesn’t necessarily benefit the
evolutionary process, in fact, the opposite can, and
frequently happens (see, e.g., (Banzhaf, 1998)).

Taking all this factors in consideration we used the fol-
lowing function and terminal sets:

• F-set = {+, -, *, %, if}, where % stands for the pro-

tected division operator, and if for the if-less-then-
else statement (Koza, 1992)

• T-set = {X, Y, A..I}, where X, Y are variables corre-
sponding to the coordinates of the pixel, and A..I are
the lightness values of the pixel being calculated and
of the surrounding ones.

The results achieved were very disappointing, basically
because the behaviour of programs continued to be de-
termined, almost exclusively, by the values of the X and
Y variables. This is clearly undesirable, since it means
that we are not evolving programs that give colour to
images according to their lightness channel, we are
merely evolving a function that, when applied over an
interval of X, Y values, generates the hue channel of the
training image. Thus, we are only memorizing the train-
ing instance(s).

Taking the X, Y variables from the terminal set resulted
in having poor evolution, and convergence to trivial and
uninteresting colourings (e.g. having as a result the pre-
dominant colour of the training image, or always assign-
ing to a specific lightness value the same hue or satura-
tion).

It was clear that the variables X, Y were not producing
any desirable impact on the programs. Therefore, we de-
cided to delete them from the terminal set. It was also
clear that without these variables the programs hadn’t
enough information to determine the appropriate colour
for each pixel, since the programs only have a local view
of the lightness channel (the pixel being evaluated and the
nine surrounding ones). To compensate this lack of in-
formation, we introduced a new function, get(∆x,∆y),
whose behaviour can be described as follows: assuming
that the current pixel has the coordinates a, b, it returns
the lightness value of the pixel situated on (a+∆x, b+∆y).

Since the get function provides a way to access the light-
ness values of the surrounding pixels, there was no reason
to make these values as part of the terminal set. Accord-
ingly, our function and terminal sets became:

• F-set = {+, -, *, %, if, get}

• T-set = {E}, where E stands for the lightness value of

the pixel being evaluated.

This set-up proved to be adequate, allowing the evolution
of suitable colouring programs with good generalization
capabilities, as will be shown in section 3. In the follow-
ing section we focus on the used fitness functions, and on
the grounds for using them.

2.1.2 Fitness Functions

We start by describing the fitness function used when we
are evolving the saturation channel of an image from the
lightness one. In this situation we use the root mean
square error between the desired output and the real one
to assign fitness, i.e. considering that I holds the desired
saturation values and that P is the output of a program the
fitness is given by the following formula:

()
max_ max_

2

1 1

1

(,) (,)
1

max_ max_

x y

x y

s
I x y P x y

x y
= =

=
−

+
×

∑ ∑

 (1)

When we are trying to evolve the Hue information, this
formula must be slightly altered due to the circular nature
of the Hue channel. Assuming that the images take values
in the [0, 1] interval, the above formula yields a maxi-
mum distance when I(x,y) = 1 and P(x,y) = 0 (or vice-
versa). However, in this situation the difference in hue
would be quite small and probably unnoticeable to a hu-
man observer. Therefore, we use the following formula:

()
max_ max_ 2

1 1

1

min (,), (,)
1

max_ max_

a x y

x y

h
I x y P x y

x y

θ
= =

=
  

+
×

∑ ∑

 (2)

where I holds the desired Hue values, P the program’s
output, and minθ returns the minimum angle distance be-
tween the two values. This fitness function can be further
improved if we take into consideration that the perceived
difference in hue depends on the lightness of the pixel
(e.g. if the pixel as lightness equal to zero it will always
be black, no matter what hue we assign to it; even when
the lightness is only close to zero, giving to that pixel a
hue different than the desired one will hardly be notice-
able to a human viewer). Taking this into account, and
considering that L holds the lightness information we
obtain the following formula:

() ()
' max_ max_ 2

1 1

1

min (,), (,) 1 2 0.5 (,)
1

max_ max_

a x y

x y

h
I x y P x y L x y

x y

θ
= =

=
 × − × − 

+
×

∑ ∑

(3)

The tests conducted using formulas 2 and 3 as fitness
functions yield deceptively good results. In the early steps
of evolution fitness increases steadily and swiftly, giving
the impression that an adequate colouring program will
be easily found. However, after a few hundred genera-
tions, the improvements in fitness drop suddenly and evo-
lution seems to halt. This wouldn’t be a cause for concern
if the evolved programs solved the problem at hand satis-
factorily. To some extent they do, since they usually have
high fitness values, relatively close to the maximum at-
tainable fitness. The problem is that a qualitative analysis
of the results reveals that the colourings are usually unin-
teresting from an aesthetic perspective – typically, only a
small subset of the original colours is used, resulting in
the loss of nuances that make the original colouring work.
This situation becomes more severe when the training
images have a large area filled with a particular hue
value, and other areas filled with hue values close to that
one.

To better explain the problem we will use an example:
consider, for instance, a landscape painting mostly filled
with green (for the grass and trees) and with a blue sky
(green and blue are relatively close in the colour spec-
trum); a program that outputs the hue corresponding to
the green colour will have a relatively good fitness, since
it is not penalised in the dominant green area of the image
and only suffers a little penalisation on the blue area. To
make things even worse, such a program is easy to
evolve, so it will be found in a small number of genera-
tions. Changing it by mutation or crossover will tend to
decrease its fitness, meaning that the fittest descendents
will tend to be similar to it. Therefore, in a few genera-
tions the population will be dominated by similar pro-
grams, which will begin to increase in their size to protect
themselves from destructive crossover and mutation; soon
the increase in size becomes exponential and evolution
becomes impossible (the exponential growth of program
size is usually called bloat problem; a more detailed ex-
planation of why bloat occurs can be found in (Banzhaf,
1997)).

In an attempt to force our system to evolve more interest-
ing colourings, covering a wider colour spectrum, we
decided to add another factor to our fitness function. A
description of the procedure used to calculate that factor
follows.

We start by taking the I image (that holds the desired hue
values) and decrease its colour depth, using the optimised
median cut algorithm, obtaining an image I’ composed by
only 16 different hue values (v1…v16). Then we count
how many pixels exist of each different hue and store the
pixel count values in an array, AI’. For each pixel of im-
age P, which holds the output of the program, we deter-
mine the closest hue value, vi, and the distance ∆v be-
tween the pixel value and vi. We add to AP’[i] the value 1-
∆v, thus if the pixel’s hue matches exactly one of the six-
teen hues present in the training image we add one, when
it doesn’t match exactly we add slightly less. After per-
forming this procedure for all the pixels of the output
image we compute the following formula:

()
15

2
' '

0

1

[] []
1

16

b

I P
i

h
A i A i

=

=
−

+
∑

 (4)

Thus, we are basically comparing the number of pixels of
each hue value of the output and target image. Returning
to our previous example of the green and blue landscape,
if the output image has the same amount of blue pixels
and green pixels than the original (and also assuming that
it is the exact blue and green tone), formula 4 will give a
value close to one. However, if the output image is domi-
nated by the green colour there will be a huge discrep-
ancy between the amount of green and blue of the two
images, and therefore Hb will be close to zero. Notice
that, in what Hb is concerned, the placement of the col-
ours has no real influence on the resulting value. To fur-
ther force a wider coverage of the colour spectrum, we
also used the following modification to this formula:

 ' 215
' '

0 ' '

1

[] []
max([], [])

1
16

b

I P

i I P

h
A i A i

A i A i=

=
 −
 
 +

∑

 (5)

which ensures that all sixteen different hues have the
same weight in the calculation. Resorting again to our
example, and considering that we have a small yellow
area (for the sun), when we use formula 5 having the cor-
rect number of yellow pixels is as important as having the
correct number of blue or green ones. In the next section
we will present some of the experimental results
achieved.

3 Experimental Results

To test our approach we conducted a series of experi-
ments. As training images, we used some of the early
works of Wassily Kandinsky. The images where reduced
to the size of 96*96 pixels in order to allow a faster evo-
lution. Although our system may use several training im-
ages at the same time, we haven’t taken advantage of this
possibility so far. The results presented in this section
concern the evolution of programs that take the lightness
channel of an image as input and give the hue channel as
output. As fitness we used Ha’+Hb’.

a) a’)

b) b’)

c) c’)

d) d’)

e) e’)

Figure 2: On the left column the original images, on right
the images resulting from the application of the best indi-
vidual of each run to the lightness channel of the training

image.

In Fig. 2 we present some of the training images, and the
images generated by the evolved programs1.

It is clear from the results presented that we can achieve
images very close to the original ones. However, what is
really important to our goal is accessing how well do the
evolved programs perform when applied to images not
involved in their training, i.e. their generalisation capa-
bilities. In Fig. 3 we present some results achieved with
this mode of operation.

Figure 3: The images on the first column result from the
application of the program that generated the image a’

from Fig. 2; on the second column, images resulting from
the application of b’; on the third column images result-

ing from the application of c’.

We consider these results to be extremely promising.
Some of the colourings presented in Fig. 3 are quite close
to the original ones and, additionally, in some cases, al-
though significantly different, they are still interesting

1 A colour version of the paper can be found in:
http://www.dei.uc.pt/~machado/research/research.htm

colourings. In order to allow a more equitable assessment
of the results, we don’t present the original image corre-
sponding to the fourth row of Fig. 3.

4 Conclusions and further work

In this paper we presented our ongoing research whose
goal is to learn to colour greyscale images from a set of
training instances. This effort is part of a wider research
project that aims at building a fully autonomous con-
structed artist.

The results achieved so far concern, mostly, the evolution
of programs that generate the hue channel from the light-
ness one. The experiments performed on the evolution of
programs to generate the saturation channel, seem to in-
dicate that this task is quite simpler. Nevertheless, the
replacement of the original saturation channel by one
generated through a program will unavoidably imply the
introduction of further noise. At the time of writing we
can’t access exactly how much this will affect the quality
of the generated colourings (although we foresee little
impact).

There is also the need to conduct additional experiments,
specially to use several training images simultaneously,
which will hopefully increase the generalization capabili-
ties of the evolved programs. Another aspect that can be
improved is the fitness function, we are currently altering
it so that it also takes into account the vicinity relations
between areas of colour, once again the idea is to pro-
mote the evolution of programs that assign colour based
in more general concepts.

A final word goes to other types of application of the
proposed techniques, for instance, the colouring of black
and white movies. Assuming that one of the frames is
coloured (either by hand or by some other method) it
should be possible to evolve a program that gives correct
colours to the surrounding frames.

Acknowledgements

This research project was approved by FCT (Fundação
para a Ciência e Tecnologia) and POSI (Programa Oper-
acional "Sociedade da Informação"), and is partially
funded by FEDER, project n. POSI/34756/SRI/2000.

We would also like to thank the blind reviewers of this
paper, which provided precious remarks not only for the
paper in question but also for future research.

References

Banzhaf, W., Nordin, P. and Francone, F. D. Why introns

in genetic programming grow exponentially, Work-
shop on Exploring Non-coding Segments and Genet-
ics-based Encodings, ICGA, East Lansing, MI, USA,
1997.

Banzhaf, W., Nordin, P., Keller, E. and Francone, F. D.

Genetic Programming – An Introduction, Morgan
Kaufman, 1998.

Cohen, H., The Further Exploits of AARON, Painter,

SHR, Constructions of the Mind, Vol. 4, Issue 2,
1995.

Cohen, H., Colouring Without Seeing: a Problem in Ma-

chine Creativity, AISB Quarterly, 102:26-35, 1999.

Fukunaga, A. Stechert, A. Mutz, D. A Genome Compiler

for High Performance Genetic Programming, Ge-
netic Programming 1998: Proceedings of the Third
Annual Conference, pp. 86-94, Morgan Kaufmann,
1998.

Kandinsky, W., On the Spiritual in Art, republished by

Dover publications in 1997, 1911.

Koza, J. Genetic Programming: On the Programming of

Computers by Means of Natural Selection, MIT
Press, 1992.

Machado, P., Dias, A., Cardoso, A., GenCo – A project

Report. Proceedings of the Third International Sym-
posium on Artificial Intelligence and Adaptive Sys-
tems (ISAS’2001), La Havana, Cuba, 2001.

Machado, P., Cardoso, A., All the truth about NEvAr.

Applied Intelligence, Special issue on Creative Sys-
tems, Bentley, P. Corne, D. (eds), Vol. 16, Nr. 2, pp.
101-119, Kluwer Academic Publishers, 2002.

Nordin, P. A compiling genetic programming system that

directly manipulates the machine-code. Advances in
Genetic Programming, Kenneth E (Ed.), pp 311-
331, MIT Press, 1994.

Nordin, P., Banzhaf, W. Complexity Compression and

Evolution, Genetic Algorithms: Proceedings of the
Sixth International Conference, ICGA95, pp. 310-
317, Morgan Kaufmann, 1995.

Sims, K., Artificial Evolution for Computer Graphics,
ACM Computer Graphics, Vol. 25, pp. 319-328,
Addison-Wesley: Boston, MA, 1991.

	References

