
MODEL PROPOSAL FOR A CONSTRUCTED ARTIST

Penousal Machado
Instituto Superior de Engenharia de Coimbra

3030 Coimbra,  Portugal
machado@alma.uc.pt

Amílcar Cardoso
Dep. Eng. Informática, Uni. Coimbra, Polo II

3030 Coimbra,  Portugal
amilcar@dei.uc.pt

ABSTRACT

This paper is dedicated to the development of constructed
artists, i.e., computer programs capable of creating artworks
with little or no human intervention. We make an analysis and
critic of some of the most prominent work on this field. We
give a description of the main characteristics that a system
should have, in order to be considered a constructed artist.
These characteristics include the capacity of making aesthetic
judgments, which takes us to the origins of art and aesthetics,
for which we present a brief theory. Finally we propose a
model for the development of a constructed artist. This model
has the capability of performing aesthetic evaluation, through
the use of neural networks. The images are generated using a
genetic algorithm, and represented using Fractal Image
Encoding. This type of methodology allows the representation
and, consequently, the generation of any type of image.

Keywords:  Computer Art, Aesthetics, Genetic
Algorithms, Neural Networks.

1. INTRODUCTION
The idea of using computers for generating artworks is present
from the earliest dates of computer history. Their use as tools
had a great impact in fields such as music, advertising and
graphics - changing the way art is made. Some of this
applications try to reproduce “natural” tools for artists while
others provide completely different ones (e.g. virtual
environments) enabling the appearance of new art forms.

In spite of their cleverness, sophistication and utility this
applications are merely tools for the artist. The “dream” of
creating a machine capable of generating art also has a long
history. An illusionist from the 19th century created an
automata named Zelda that was capable of drawing simple
images. Zelda’s rudimentary mechanism of dented wheels was
quite an achievement for that time, and was able to fool
people into believing that Zelda could really draw any image
they asked.

Since then computers and AI have been applied to several
fields of the arts, including poetry, music and image
generation. The success of these applications has been bigger
in music than in visual art. This can be explained by the

higher quantity of information required by image handling and
by the fact that music theory is more developed and
quantitative than theory in visual arts [16].

The majority of AI applications to the arts falls into two
categories: (1) Systems performing some sort of art
understanding task, such as musical analysis, and systems that
work as “intelligent” tools for human artists [9]; (2) and a new
range of applications that is beginning to emerge, the
constructed artists which “are supposed to be capable of
creating aesthetically meritorious artworks on their own, with
minimal human intervention.” [9].

In this paper we talk about the development of computer
programs capable of creating artworks. We focus in the field
of visual arts. In section two, we make an assessment of the
current “state of the art” in this field. In doing so, we specify a
set of features that current systems lack, and that should be
present. The third section pertains to the origins of art and
aesthetic judgment, we give a short biological explanation to
the devotion of humans to art and to how natural evolution
favored the appearance of art. We also give evidence to the
sharing of aesthetic values with other species. In section four
we propose a model for a constructed artist. This model
overcomes some of the flaws that the current constructed
artists exhibit. Finally, in section five, we describe the current
state of development of our system, draw some conclusions,
and point towards unexplored aspects in this field.

2. STATE OF THE ART
We will start by describing two approaches that have gained a
vast acceptance. The first approach is rule based while the
second relies on the use of genetic algorithms.

Harold Cohen can be considered as the precursor of  the rule
based approach [16]. Cohen started his career as a painter and
adquired a worthy reputation, he had a special interest in “the
way in which symbols could evoke significance or meaning to
the viewer” [4]. He became involved in computer
programming as a hobby and joined its two interests when he
started developing Aaron in 1972. Aaron, is probably the most
acclaimed constructed artist, its paintings have been exhibited
in several museums and art galleries. The first versions of
Aaron generated monochromatic line drawings that were later



colored by Cohen. The latest version of Aaron (1995) is
already able to paint its own drawings.

Aaron’s rules are based on Cohen’s beliefs about his own
image making process [4]. These rules concern to two types of
knowledge: Procedural Knowledge that tells the system how
to paint and Declarative Knowledge that tells what to paint.
The development of Aaron ranges for over two decades, which
gives an idea of the amount of work involved in coding the
knowledge necessary to do artworks into rules. This set of
rules is extremely valuable since it provides an accurate
description of the artwork’s theory and structure [16].

The second approach is rooted in a computer program written
by R. Dawkins. This program evolves images of virtual
creatures (biomorphs), using of a genetic algorithm [15].

The original program works in the following way: (1)
Generates an initial random population of  biomorphs, that
becomes the active population. (2) The individuals of the
active population are evaluated by the user according to some
criteria. (3) A new population is generated by the mutation of
the genetic code of the best individual. (4) This population
becomes the active population and the process is repeated
from step 2. This “simple” idea served as a base for a large
number of applications in several fields including the field of
visual arts.

By using as criteria for evaluating the individuals, the
aesthetic value of the image that they represent, this method
can be used to generate aesthetically pleasing images as was
shown by [7][8][17]. Most of this applications are more
complex than the original program specially in what concerns
to the matting operators that generally include sexual
reproduction. The main difference between these applications
lie in the coding of the images. Karl Sims, for instance, uses
mathematical functions, coded in the form of Lisp
S-Expressions, ex:

“(round  (log  (+ y (color-grad (round (+ (abs (round (log
(+ (y (color-grad (round (+ y (log (invert y) 15.5)) x)3.1
1.86#(0.95 0.7 0.59) 1.35)) 0.19) x)) (log (invert y) 15.5))
x) 3.1 1.9 #(0.95 0.7 0.35) 1.35)) 0.19) x)” [8].

The program generates the images from the S-Expressions;
mutation and crossover is also performed at the S-expression
level1.

The power of this method rests on the fact that the user
doesn’t need do have knowledge about the S_Expressions
involved in the generation of the image, he/she only needs to
select the most appealing ones [17]. The technique in which
the user supplies the fitness function results, and thus guides
de evolution process was named interactive evolution. This
methodology has already proved to be extremely useful, some
of its applications are: identification of the faces of criminal
suspects by witnesses; generation images, animation, textures,
music and 3D-Objects. Some of the potential applications are
product design, e.g., cars, and architectural design [7].

                                                       
1As far as we know, there is no evolutionary algorithm
application that works directly with the images as bitmaps.

Fig.1 - “Blind Spot” from Interactive Genetic Art II,
http://robocop.modmath.cs.cmu.edu:8001/, supplied by John

Mount.

One of the major drawbacks of interactive evolution is that
evaluating the individuals of a population is a time consuming
process. Furthermore, in genetic algorithms applications it is
common to have populations with a large number of
individuals, population sizes of over an hundred are not
uncommon, what only makes matters worst. Due to this
problem the majority of interactive evolution applications use
small population sizes, typically 10 to 20 individuals.
According to [8] it is often needed at least 10 to 40
generations to evolve interesting images.

As we said before, these systems have been highly successful;
yet, in our opinion, they have weaknesses that might prevent
them from being considered constructed artists. Let us
consider the characteristics that we think a constructed artist
should display. The system should exhibit generic
representational capabilities, thus, it should be possible to
represent any kind of image. None of the systems described
has this representational power, what hinders their generation
ability. In Sims’ system we are limited by the representational
power of the used formulas, there is no procedure for
converting a generic image to that type of representation. In
Aaron we are limited by the procedural knowledge that the
system has, this type of rules determine the style of Aaron
paintings, and thus the generated images. We can make Aaron
capable of drawing anything, by adding declarative
knowledge, but it will always draw in its own style, unless we
change the procedural knowledge. In other words, any change
in the behavior  of Aaron must be preceded by programming
intervention. The work involved in changing or adding rules is
extremely high. Aaron is incapable of learning, a constructed
artist should be able to learn, like human artists do. We want
a system that changes his behavior over time according to its
experiences. Karl Sims’ system gradually improves its
performance, based on the user’s evaluation of the generated
images. Considering this type of development as learning



might be considered as an overstatement, but at least we can
change the system’s behavior without programming. A human
artist doesn’t start from zero, like Karl Sims’ system does (the
initial population is random), humans have access to the
artworks made by others; They are able of learning from these
examples, and eventually using them as source of inspiration.
Integrating knowledge in a constructed artist will certainly
improve its performance, it is not by chance that the most
successful constructed artist, Aaron, is deeply knowledge
based.

Finally, to be independent from humans, a constructed artist
must be able to recognize an artwork when it sees it, this will
enable it to evaluate its own artworks and guide the
generation process. As a result, a constructed artist must be
able to perform aesthetic judgments. This is probably the most
important task to achieve, unfortunately it is also the most
difficult one. The issue of aesthetic judgment was first
addressed by Plato, and since then the debates go on [9][11].
There is a large number of theories regarding aesthetic
judgment, and their relative values are unknown. The lack of a
strong theory of aesthetic value, poses several problems,
including the issue of validation of the developed systems [9].

3. AESTHETIC JUDGMENT AND THE
ORIGINS OF ART

If we ask someone why he/she likes a certain painting, people
will usually talk about the emotions or filling triggered by the
artwork, the combination of colors, global composition of the
painting, or, even more frequently, we will get the intriguing
answer: “I just like it.”.  The question “What is Art?” is an
intriguing one, lets see a definition:

“To evoke in oneself a feeling one has once experienced
and having evoked it in oneself then by means of
movements, lines colors, sounds, or forms expressed in
words, so to transmit that feeling that another can
experience the same feeling-this is the activity of art”[10]

This defines art as a form of communication, further, in the
same book, art is defined specifically as an human activity.
Another definition could be: the creation or expression of
something beautiful, that gives pleasure to the senses or to the
mind. Art and Aesthetics are different, yet highly related,
subjects. We can say, to a certain point, that Aesthetics is a
subset of the Arts, and we can define it as the study of the
form in itself, striped from its meaning.

From our point of view, the assessment of an artwork is
influenced by two factors:

• The “content” of the artwork, that relates to  what is
represented by the artwork, and which can trigger
emotions and feelings. If we consider Art as a form of
communication, then “content” is what is communicated.

• The “visual aesthetic value” of the artwork, that relates to
color combination, composition, shapes, etc. We are
talking about the form of the artwork, thus, how “content”
is represented.

By assuming this point of view we aren’t creating a false
dichotomy between “form” and “content”. We are aware of
the fact that this factors aren’t completely independent,
consequently the value of an artwork rests on these factors and
their interactions. It is important to notice that, it is possible to
have an artwork that is visually pleasing, but whose content is
displeasing, in fact many art styles rely on the mixed feelings
caused by this discrepancy (e.g. many of S. Dali’s paintings).

If we restrict ourselves to the field of Aesthetics these factors
gain independence, because, as stated before, Aesthetics
focuses in the “form”. In other words, if an image has a high
visual aesthetic value, it will have a high aesthetic value,
independently from its content, and even if it is deprived of
content. Notice that the existence of images deprived of
content or meaning is controversial, since reality is often in
the viewer’s mind. We don’t mean that content isn’t
important, we just mean it is not indispensable form the
Aesthetics point of view.

It is clear that “Every artwork exists within a rich cultural
context, and many theorists argued that good art can be
neither produced or assessed in ignorance of this context”[9].
It seems clear that the way how content influences the value of
a given artwork depends, mainly, on cultural issues. From our
point of view, visual aesthetic value, is directly connected to
visual image perception and processing and is, therefore,
mainly: biological, hardwired, and thus universal. The
remainder of this section is dedicated to the support of the
previous statement.

Art’s Origin
To support the previous statement we will start by focusing on
the origins of art and try to show how Natural Evolution could
favor the appearance of art. Natural selection should favor the
fittest individuals in a population, so why should a seemingly
useless activity as art be favored by it?

To the vast majority of the animals, the struggle for survival
takes all their time. Only in their infancy they have time to
playing and games. The same happened to the primitive man.
Only from a certain point in history man begun to have spare
time.
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Fig.2- Set of explanations that justify the appearance of art.

The appearance of art may be explained by the necessity of
using other forms of communication other than gesture or



speech. This explication is usually accepted, there are,
however, other explanations that can be considered
complementary. The coordination of hand movements had a
great influence on human evolution. When a prehistoric man
devoted himself to painting he was not doing a fruitless
activity: by painting he was also training and improving his
motor coordination. This two factors would give him an
immediate survival advantage

When it comes to natural selection, we also have to consider
the matting advantages since that animals tend to choose the
most fit individual they can for matting. By making an artwork
he is making a direct display of ability, furthermore he is
showing that he has time to spend on activities that aren’t
vital for his immediate survival, and thus making an indirect
display of ability. In our opinion this set of explanations gives
reasonable justification for the devotion of man to art, they
don’t justify, however, why we find certain images beautiful,
aesthetically pleasing or artistic. As we said before, we
believe that there is a visual aesthetic judgment that is
universal, independent from cultural issues and thus
hardwired, having biological roots. We aren’t saying that it is
coded in our genes, we just mean that what we are, and the
way our visual image perception system works, makes us
favor certain images to others.

The analysis of children’s drawings allows us to observe the
development of aesthetic. Between the ages of one and three
years, the infants have difficulties to accurately control their
hand movements. Among the ages of two to three years, they
are capable of making powerful lines, soon simple images
begin to emerge from the chaos of lines. The next stage is the
appearance of  the first pictorial images. Usually, the first
pictorial image is the human figure. This image is, also,
always constructed in the same, rather puzzling way. It begins
with an empty circle; in the next step bubbles are added to the
inside of the circle; the bubbles are gradually transformed in
eyes, mouth and nose; afterwards hair is included; Some of the
hairs get longer, untill they are transformed into arms and legs
[2]. Somewhere between the ages of six and twelve, these
universal images begin to disappear due to educational
influence.

It seems safe to say that visual aesthetic judgment is not
particular to humans, in fact we share this ability with other
species of animals. Experiments with chimpanzees show that
they follow the same steps of development of human infants.
The first stages of development are similar, chimpanzees,
however, aren’t able to go beyond the phase of the circle into
the phase of the filled circle. They also never seem to be able
to create a pictorial image. Nevertheless, their paintings show
that the brain of a chimpanzee is capable of making simple
aesthetic judgments. Morris found six common principles
between chimpanzee and human art: Self-Rewarding Activity,
Compositional Control, Calligraphic Differentiation, Thematic
Variation, Optimum Heterogeneity and Universal Imagery [1].

These leads us to conclude that the assessment of the visual
aesthetic value of an image is directly connected to the visual
image perception system. Let us consider how this system
works.
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Fig.3 - Steps of visual image perception.

The process of transformation of the ocular image into its
digital representation is well known. From this representation,
the brain constructs internal representations, retaining only
certain aspects of the image. The way how this process works
is still source of much debate. The idea that there is a “pre-
processing” of the digital image (shape and contour detection,
color analysis, depth and movement analysis, etc), and that
“recognition” and subsequent transformation to internal
representations is made based on the results of this “pre-
processing”, is usually accepted [6].

From the previous statement, we can say that there is a
difference between image complexity, and internal
representation complexity; furthermore a complex image isn’t
necessarily difficult to (pre)process. To clarify our previous
statement, consider the following analogy: a fractal image is
usually complex, and highly detailed, yet it can be compactly
described by a simple mathematical formula. Therefore, we
can say that there is a difference between image complexity,
and internal representation complexity; furthermore a complex
image isn’t necessarily difficult to (pre)process.

In the book The Society of Mind, Minsky associates the
concepts of fashion and style to the mental work necessary to
process images:

“…why do we tend to choose our furniture according to
systematic styles or fashions? Because familiar styles
make it easier for us to recognize and classify the things
we see. If every object in a room were distracting by itself,
our furniture might occupy our minds too much… It can
save a lot of mental work…”2 [13].

If we accept this explanation we are lead to conclude that
simpler, easier to process, images have higher aesthetic value
than complex ones. Or, in other words, low processing
complexity implies high aesthetic value. If we follow this idea
we come to the conclusion that, a completely blank image has
higher aesthetic value than any artwork, since it is certainly
more easy to process. Minsky’s examples are related to office
furniture, when we are in an office we don’t want to be
distracted, you want to work; when we are admiring an
artwork, we want to be distracted, that’s probably why we
usually have, in our offices, a painting to look at when we
want to distract ourselves.

In our opinion the aesthetic visual value of an artwork
depends on two factors: (1) Processing Complexity (the lower,
the better); (2) Image Complexity (the higher, the better). This
seems contradictory, but as we said before a complex image
isn’t necessarily difficult to process. Thus, images that are
simultaneously visually complex and easy to process are the
images that have higher aesthetic value. Our state of mind
influences how we value this factors, if we are tired, we will
probably give more importance to processing simplicity. The
importance of recognizability (in the sense of easiness of

                                                       
2 This is in some way similar to the “principle of economy”
found in evolution’s theory.



processing) is present in the works of many artists. M.C.
Escher, for instance, devoted a lot of attention to how the
coloring of images should be made, in order to increment the
recognizability of its patterns [3]. Returning to the fractal
example, fractal images are usually complex, the propriety of
self-similarity makes these images easier to process, which
gives an explanation to why we usually find fractal images
beautiful. Another important characteristic of fractal images is
that they have several levels of detail, this characteristic can
also be found in many artworks, (e.g. Kandinsky’s works).
This strike’s us as very important specially if we notice that
the act of  “seeing” isn’t instantaneous, it spans through a
(sometimes long) period of time. When we look briefly at such
an artwork we are automatically able to recognize its main
shapes, if we give it more attention we will increasingly
discover more detail. This makes the image easy to process,
and thus less distracting when we don’t want to give it
attention; simultaneously, when we want to give it attention
we will always find enough detail to “fill” our minds. If the
image had only one level of detail, it would probably make it
either difficult to process rapidly or with little complexity.
This would hinder the generality of the artwork in the sense
that our willingness to look at it would largely depend on our
state of mind. Thus, it is important to preserve an high Image
Complexity / Processing Complexity ratio through all the
period of seeing.

One final remark goes to the fact that until the appearance of
photography, visual arts bearded the burden of representation.
This resulted in the development of a high technical
competence, usually achieved by sacrificing the recreational
aspects that are the roots of children’s art (to an analysis on
the connections of art and aesthetic with games and play see
[11]). With the appearance of photography, the artists became
more experimental gradually returning to the recreational
roots of art (the cubist’s art, for instance, is very similar to
some forms of tribal art).

4. PROPOSED MODEL
In the development of a model for a constructed artist, we
took into consideration the previously referred characteristics
that a constructed artist should have. A constructed artist
encompasses two main modules: Generation and Evaluation.
For the generation of images we rely on a Genetic Algorithm
(GA). This choice is based on the robustness of this method
and its performance in complex and irregular search spaces,
furthermore [7][8][17] show that this method can be
successfully used for the generation of interesting images. For
the evaluation of images we use Neural Networks (NNs). The
main reason for choosing NNs over other methods was that
NNs can be trained to perform some task by the presentation
of examples. This allows us to achieve our goal without
having to create rules to evaluate the images[17].

Of outmost importance is the issue of how the images should
be represented. The amount of memory needed to store images
in bitmap format is extremely high and this type of storage
doesn’t seem appropriate for the use with genetic algorithms.
Using mathematical formulas to represent the images solves
this two problems at the expense of the generality. We have

the problem of developing a system that is, simultaneously,
generic, appropriate for the GA approach  and that lessens the
amount of information needed to represent the images.

Methods of image compression that rely on Huffman coding,
or similar algorithms, aren’t a solution to this problem, since
the amount of information remains the same. What we need,
is a method that relies on the transformation of the images,
e.g. transformation of the bitmap image into a set of lines, and
filling the shapes generated by these lines with an adequate
color. Considering these problems, we chose Fractal Image
Encoding as a way of representing images. It was
demonstrated by Barnesley that any image can be represented
through a Partitioned Iterated Function System (PIFS),
resulting, generally, in a significant reduction on the amount
of information needed to represent the image [18]. The
possibility of representing any image is important, since we
want our constructed artist to have access to the works of
human artists.

Fractal Image Compression
A detailed description on how fractal image compression
works, is beyond the scope of this article and can be found in
[18], nevertheless we will make a short introduction to the
subject since it is essential for the full understanding of our
approach. We will leave much of the mathematical details out.

Consider a special type of photocopying machine, that reduces
the image to half and reproduces it three times [18]. If we feed
back the output this will converge to the image known as the
Sierpinski Triangle, the attractor of these transformations.

Fig.4 - Successive images generated by the copying machine,
converging to the Sierpinski triangle. The initial image (a

circle) is reduced to half its size, by repeating this process to
infinity the original image is reduced to a “dot”.

Since that the transformations are contractive, when the
process is repeated an infinite number of times the initial
image becomes reduced to a single point (see Fig.4).
Therefore these transformations will always converge to the
Sierpinski triangle, independently from the initial image. In a
more formal way, defining W(x) = x1 as the above mentioned
transformations, x and x1 as the images fed and generated by
the copying machine (respectively), and A as the Sierpinski
triangle, we have that:

lim n →∞
 W 

on
(x) = A ,∀x.

and that:
W(A)=A

In mathematical terms W is an Iterated Function System (IFS),
i.e., a collection of contractive transformations {wi: ℜ2 → ℜ2 |
i=0,...,n} which map the plane ℜ2 to itself [18]

How can this be used for image compression? Well, the
Sierpinski triangle is a complex image yet it can be
represented by a simple IFS consisting in three
transformations, so all we have to do is to store the
transformations. We can generate the image by applying the



transformations to a random initial image, since as we stated
before, this process will always converge to the attractor.
Now consider that we want to compress an arbitrary image f,
then we must find the set of transformations W that has that
image as an attractor, W(f)=f. We have just described the
basic idea behind fractal image compression. We will now
generalize this idea so we can use it to compress gray-scale
images.

The global self-similarity found in the Sierpinski triangle isn’t
usually present. To cope with this we will use Partitioned
Iterated Function Systems (PIFS) instead of IFS. In an IFS
each transformation is applied to the whole image, e.g. for the
Sierpinski triangle we have three transformations, that scale
the whole initial image to half and copy it to a specific
location. In a PIFS each transformation is applied to a part of
the image, i.e. instead of copying the whole image it copies a
part of the image.

In the IFSs that we have discussed each transformation
consisted in: scaling, rotation, and position of the copy. To
enable the coding of gray-scale images, we must add, a
contrast and brightness adjustment. Thus, each transformation
of our PIFS will consist on the following factors: part of the
original image to be copied, position of the copy, scaling,
rotation, contrast adjustment and brightness adjustment.

Let us see how a copying machine based on this scheme would
work. For each transformation wi belonging to the PIFS W, a
portion of the original image Di, is copied to a part Ri of the
generated copy. We call the Dis domains and Ris ranges. As it
is copied the Di suffers a brightness, contrast and rotation
(BCR) transformation. Given an image f, a single copying step
with this special copying machine can be written as
W(f)=w1(f) ∪ w2(f) ∪ ...∪ wn(f), n=Nº of transformations of
the PIFS. To encode an image f we must find a PIFS W such
that, W(f)=f, generally we can’t find an exact match and we
have to settle for W(f)≅f.

Fig.5 - The original Lenna image (top). And the same image
compressed 16 (left) and 32 (right) times using the Fisher’s

Quadtree_Partition method.

There are several ways to partition the image, a description
and comparison of these methods can be found in [18] here we
describe the Quadtree Partitioning algorithm presented in
[18]. Assuming that the image, f, size is 256*256, we start by
creating a domain pool D consisting in all the squares of the
image of size 8, 16, 32 and 64. Then we partition the image in
non-overlapping squares of size 32, this will be our Ris. For
each Ri we try to find a Di and corresponding BCR
transformation such thus wi(f)≅Ri, we only consider Dis that
are twice the size of the Ri . If the error is less than a
predetermined value e, we mark the Ri and store the
transformation. If not, we subdivide the square in four and
repeat. The algorithm ends when all the Ris are marked. This
algorithm works surprisingly well, as can be proved by the
above images.

Using this method for encoding image involves a high
computational cost; fortunately this process can be easily be
implemented by a parallel algorithm. The decoding process is
relatively fast.

Generation
As we said before, we the generation of images is made
through a GA. This algorithm is close to the one presented in
[8]. The differences are that we use fractal image encoding to
represent images, and added a Knowledge Base of Images.

In its simplest form the algorithm works in the following way:
From an initial population of images, the system selects the
ones with highest visual aesthetic value (the process of image
evaluation will be described later); The next generation is
created through mutation and recombination (through
crossover) of the selected images.

The choice of fractal image encoding for the representation of
images allows us to integrate background knowledge. This can
be achieved in two different ways:

1. The initial population does not need, to be random: we can
use any set of images, including famous artworks, as
initial population.

2. We can maintain a knowledge base of images, which are
not subject of selection. The images in this knowledge
base can be selected for matting with images of the
current population or between themselves. The knowledge
base can be initialized with any set of images we choose.
Additionally, images of high aesthetic value generated by
the system can be added to the knowledge base.

The use of a knowledge base of images has additional
benefits. It is a reasonable way of “increasing” population
diversity, if population diversity is low we can use images
from the knowledge base as matting partners. It also prevents
the early lost of remarkable images. Imagine that a image, f, of
high aesthetic value is generated in one of the first
populations, this image is selected for matting and a new
population is created, but since the other matting partners had
low aesthetic value the resulting images are probably worst f.
Within a few generations the  f can be “irreparably” lost. The
use of a knowledge base of images prevents this from
happening.



In most genetic algorithm application the individuals are
represented by bit strings. In this case a mutation can be
defined as a alteration of the value of a randomly chosen bits.
Crossover can be defined in a simple way: swap a randomly
chosen sub-string between the two parents, the resulting
individuals are the offspring.

Our individuals are represented by quad-trees, although this
quad-trees can easily be represented in a bit string format (it
is the format used for file storage of the images); Using this
format in conjunction with the “standard” mutation and
crossover operators isn’t appropriate. Our muttator operator
can be defined as follows: 1) randomly choose one of the
nodes of the tree; 2) If the chosen node is an internal node, i.e.
a square that is further subdivided, it becomes a leaf, and the
values of the BCR transformations and Di are randomly set. If
the chosen node is a leaf we randomly choose one of its fields
(i.e. one of the BCR transformations or Di) for mutation, and
mutate it. The crossover operator consists in randomly
selecting a sub-tree from each of the parents, and swapping
this sub-trees. If the sub-trees are located at different levels,
there is a difference in the size of the Dis, this can result in
Dis that go beyond the edges of the image; When this happens
the x,y position of the Dis is changed to the nearest admissible
position.

Evaluation
As we said before, aesthetic evaluation is probably the most
difficult problem to tackle. Automating the evaluation process
serves two purposes. First, we consider that a constructed
artist must be able to perform aesthetic evaluation. Second,
and from a more pragmatic point of view, the automation of
the evaluation process enables greater population sizes,
improving the performance of the system.

To automate the evaluation process we chose to use NNs, this
choice is also a pragmatic one. We can train a NN to perform
some task by giving examples to it. If we chose a rule based
approach we would have to construct rules to perform the
task. The task of aesthetic evaluation appears to be extremely
complex, furthermore, there is no strong theory in this
domain, as result of this the rule based approach seems
inadequate and would certainly be extremely time costly and
complex. We have considered two other approaches: Case
Based Reasoning (CBR) and Genetic Programming (GP).
CBR has been used, with success, to create constructed artists
in the field of music [5][9], this systems, however, don’t
perform aesthetic evaluation. It doesn’t seem clear to us, how
such a system could be created using this approach, at least
without the expense of generality. GP looks like a good
choice, yielding the same advantages (possibly more) of NNs,
unfortunately, GP doesn’t appear to be able to cope with
problems as complex as aesthetic evaluation (at least
presently).

To train a NN we must provide it a set of examples that is
representative of the whole population. In our case we have to
construct a set that covers the population of all possible
images of a given size [17]. To deal with this problem we
make several independent runs of our system, with an user
making the evaluation of the image. From the set of images
generated by this process, we randomly chose a subset for

training purposes [17]. This choice is made taking in account
that we must have enough examples of images of all
“different” aesthetic values. Generally, most of the images are
uninteresting, if we chose completely at random we would end
up many uninteresting images and only a few interesting ones.

It is important to notice that, while in Sims’ system the user
only needed to evaluate the images in comparison with the
others of the same population, in our case the user must
provide a global value for each image.

An interesting question is what shall serve as input for the
NN. We have two possibilities, either we use the quad-tree
encoding of the image to generate the image and use the
bitmap representation as input, or, we use the quad-tree
representation as input, directly. This second approach seams
more promising by several reasons.  Considering that we are
working with 256*256 gray-scale images, the amount of
memory necessary to store this images in bitmap format is
64K. We can reduce the image to 64*64 and use the resulting
images as input for the NN, although the error involved in this
operation is usually negligible, this still means that we must
feed the neural network with 4K, if we use the quad-tree
representation, directly, 2K are enough3. Furthermore, by
using the quad-tree representation as input we are also giving
some information about the structure of the image, i.e. about
the self-similarities present in the image.

For the validation of the results of the NN we propose three
methods: Using the images generated by the system that
weren’t used for training, compare the values supplied by the
neural network to those supplied by the user [17]; Use a
“random” set of images, taken from magazines, books, etc.,
and compare the assessment made by the NN to the
assessment made by a human; Use psychological tests that
were developed to assess the aesthetic evaluation ability of
humans, e.g. [12], and see how the NN scores in comparison
with humans. These three methods have different difficulty
levels and allow us to determine the quality and generality of
the results supplied by the neural network.

The Whole Picture
Let’s review how our system works: we start with a working
set of images built by the knowledge base of images and the
current population. The images in this set are already in its
quad-tree representation and evaluated.
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3 Considering that the artworks integrated in the knowledge
base were compressed 32 times.



From the working set, the genetic algorithm creates a new
population of images through mutation and crossover. Images
of high aesthetic value have more chances of being selected
for matting. The images of this new population are,
independently, evaluated by a neural network, resulting in a
evaluated population. This population becomes the current
population and, additionally, images that: have a aesthetic
value that is higher than c, or superior to the average of the
population by a value d, are added to the knowledge base (c
and d are empirically specified constants).

The use of the knowledge base can be turned on/off, and we
can change the probabilities of using images from the
knowledge base for matting.

5. CONCLUSIONS AND FURTHER
WORK

In this paper we specified a set of features that the current
constructed artists lack and justified the importance of this set
of features. It is our conviction that the proposed model
provides a feasible way of integrating these features. We also
presented a brief theory of aesthetics. In this theory, we
consider the biological roots of Art and Aesthetics. We stated
that the assessment of an artwork depends on two factors:
content and form, furthermore we claim that aesthetic value is
directly connected to the image processing task of the brain.

Our system is still under development, no results are available
yet. There are three main modules: fractal image encoding
image generation and aesthetic evaluation. The generation and
encoding modules are nearly operational. The first results of
the system, with the user making the evaluation of the
generated images and thus guiding the evolution process,
should be available in the near future.

We use genetic algorithms for image generation, this type of
approach relies on the assumption that the combination of two
highly fit images results, at least generally, in a fit image. This
assumption isn’t always true, so, to improve the system’s
performance, we could develop a matting operator. This
operator would select sets of  “compatible” images and
crossover would performed between this images.

It seams possible to attack the problem of developing a
constructed artist in a radical different way. We stated that
aesthetic value is connected to the image processing tasks,
furthermore we claimed that images of high aesthetic value
are the ones that have a high image complexity/processing
complexity ratio. Therefore if we develop an “complete”
image processing system, and assuming that our claims are
correct, we can use the mentioned ratio as a measure of the
aesthetic value. Testing this idea would be interesting on to
accounts: It might provide a way of proving our claims; It can
result in the development of a system capable of making
aesthetic judgments that aren’t based on those made by
humans. This would probably be the first non-anthropocentric
constructed artist, resulting in the creation of truly alien
artworks.

Little as been said about music, we think that much of what
we stated about visual arts could also be applied to music. We

are currently involved in the development of a system for
recognizing musical styles and the emotions generated by
musical pieces.

One of the conjectures, we would like to test, is the sharing of
aesthetic values between different fields such as visual arts
and music. Thus, can a neural network trained to make visual
aesthetic judgments make, aesthetic judgments in the musical
field?
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