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Abstract—Sexual Selection through Mate Choice has for the
past few decades attracted the attention of many researchers
from different fields. Numerous contributions and supporting
evidence for the role and impact of Sexual Selection through
Mate Choice in Evolution have emerged since then. Just like
Evolutionary Theory has had to adapt its models to account
for Sexual Selection through Mate Choice and its effects, it is
relevant to study and analyse the impact that Mate Choice may
have on Evolutionary Algorithms.

In this study we describe a nature inspired self-adaptive
Mate Choice approach designed to tackle Symbolic Regression
problems. Results on a set of test functions are presented
and compared to a standard approach, showing that Mate
Choice is able to contribute to enhanced results on complex
instances of Symbolic Regression. Also, the resulting behaviours
are contrasted and discussed, suggesting that Mate Choice is
able to evolve Mating evaluation functions that are able to select
partners in meaningful and valuable ways.

I. INTRODUCTION

Darwin’s theory of Natural Selection has for long been
widely accepted by the scientific community. Described by
Darwin as the result of competition within or between species
affecting their individuals relative rates of survival [1], Natural
Selection has found its way into many research fields and
is utterly relevant in Evolutionary Computation (EC). Given
a population where genetic variance occurs, individuals with
favorable characteristics have a higher rate of survival and are
more likely to spread their genes through future generations
by means of heritability while unfavored characteristics and
corresponding genes are gradually discarded.

In the years after his masterpiece on Natural Selection,
Darwin put much effort on developing his theory of Sexual
Selection, a force capable of shaping complex traits and
behaviours across the species. He described it as the result
of competition within species affecting its individuals relative
rate of reproduction [2], but unlike Natural Selection, this
theory found little acceptance at the time. Interest rose however
in the 1970s mostly due to Zahavis works [3] and previous
contributions by Fisher [4], [5]. With the emergence of new
fields of research such as Evolutionary Anthropology [6] and
Evolutionary Psychology [7], aided by modern knowledge
and technology, new ideas and supporting evidence have

contributed to a much wider acceptance of Sexual Selection
as playing a major role in evolution.

Darwin has proposed two main processes composing Sexual
Selection: Male Competition and Female Mate Choice. The
latter is the psychological process by which individuals choose
their mating partners based on their perception of others and
mating preferences and is the scope of this study. Just like
Evolutionary Theory, EC is an ongoing research field, where
new ideas are constantly introduced and experimented with.
The same way that Evolutionary Theory has had to adapt its
evolutionary models to account for Sexual Selection through
Mate choice, it is relevant to study the impact and inherent
effects that it may have on Evolutionary Algorithms (EA).

Studying Sexual Selection through Mate Choice in EC
presents a number of challenges, the most prominent be-
ing the difficulty of modeling nature-inspired Mate Choice
mechanisms as well as analysing its effects on EAs. The
process depends on individuals’ ornamentation, perception of
others and mating preferences that evolve similarly to physical
traits [4], which is not straightforward to model. Also, unlike
Natural Selection based models, individuals adapt not only to
an environment but also in relation to each other through the
intrinsic relation between mating preferences and displayed
ornaments or characteristics [5]. This presents a new paradigm
that is challenging to analyse.

In this research we propose a self-adaptive [8] Mate Choice
approach to Symbolic Regression. The study aims at analysing
the ability of the nature-inspired model to evolve mating evalu-
ation functions that help choose mating partners in meaningful
and beneficial ways. The performance of the proposed strategy
is discussed and the impact on the algorithm’s behaviour is
addressed with a particular interest on destructive crossover.

The following section introduces Sexual Selection through
Mate Choice, including a review of the theory’s background
and of related work and implementations on Evolutionary Al-
gorithms. A Mate Choice approach for symbolic regression is
then introduced and implementation details addressed. Section
III describes the experimental setup and results are analysed
and discussed. Conclusions are drawn in Sec. IV and future
work presented.



II. SEXUAL SELECTION THROUGH MATE CHOICE

The subject of Sexual Selection through Mate Choice is
introduced on the following subsections. Firstly, sec. II-A
covers theoretical background on Sexual Selection through
Mate Choice. Secondly, previous research on Mate Choice in
EC is presented in sec. II-B. Finally, sec. II-C discusses our
approach to symbolic regression.

A. Background

Ever since publishing his theory of Natural Selection,
Darwin was interested in the origin of animal ornamentation
and courtship behaviours, briefly addressing the subject in his
masterpiece On the Origin of Species [1] and later extensively
discussing the subject in The Descent of Man, and Selection
in Relation to Sex [2]. Darwin’s intrigue was that Natural
Selection could not explain the emergence of these costly and
complex traits that don’t seem to contribute to the individuals
survival ability. To some extent they seemed counterproductive
to Natural Selection. Nonetheless, Darwin knew that in order
for ornaments and courtship behaviours to emerge and spread
they needed to bring some kind of evolutionary advantage
to individuals. In order to account for such traits, Darwin
envisioned the theory of Sexual Selection, a trait-shaping
selection feature capable of evolving complex traits that bring
reproductive rather than survival advantages.

While Natural Selection adapts species to their environment
[1], Sexual Selection adapts individuals in relation to others in
a struggle of individuals of one sex for access to individuals of
the other [2]. In this scenario, failure means that the individuals
will produce few or no offspring. While such individuals may
have strong survival abilities, from an evolutionary perspec-
tive, individuals that have a small reproductive success are
akin to individuals with weak survival abilities as their genes
are less likely to spread through future generations. Darwin’s
ideas on Sexual Selection showed that adaption occurs not only
due to differences in survival rates but also from differences
in reproductive success. They also show how psychological
traits can shape physical traits through Mate Choice.

The theory of Sexual Selection imposes that individual’s
reproductive success is determined by how attractive they are
to others. Such a paradigm includes cases where individuals
with poor survival abilities may attain a high reproductive
success because they display phenotypic characteristics that
are favored by mating preferences and the other way around.
The role of mating preferences is therefore of great relevance.
Fisher [4], [5] has made important contributions to better un-
derstand the relation between mating preferences and evolved
traits. He suggested that ornaments have evolved as indicators
of fitness and that individual whose mating preferences favour
ornaments associated to highly fit individuals will have an evo-
lutionary advantage as they will select fitter mating partners,
helping produce fitter offspring and contributing to the spread
of their genetic material [4]. Fisher also proposed, among other
contributions, that mating preferences are heritable as part of
the genotype and are therefore subject to evolution in a similar
way as physical traits [5].

The aforementioned characteristics suggest an intrinsic
and deep dependence between both mating preferences and
evolved physical traits. Fisher described the relation as a
positive-feedback loop [5], an arms race where both mating
preferences evolve in relation to exhibited ornaments and
ornaments adapt according to existing mating preferences.
In a nutshell, features that result on a higher survival rate
will bring evolutionary advantage to individuals whose mating
preferences favour them, which results on the reinforcement
and spreading of both ornaments and mating preferences. The
opposite may also occur, with ornaments adapting to popular
mating preferences in order to bring reproductive success to
individuals, resulting on the reinforcement of both ornaments
and mating preferences [5].

The feedback loop described above makes Sexual Selection
through Mate Choice an extremely difficult subject to analyse.
Moreover, Zahavi introduced the handicap principle [3] which
suggests that not all ornaments act as honest indicators of
fitness. Examples such as the peacock’s tail or the Irish elk’s
antlers show that ornaments may work as handicaps. Only
individuals with a high fitness are able to maintain such costly
ornaments, indicating good genes. A variety of behaviours
can result from Sexual Selection through Mate Choice, with
sometimes unexpected results that are challenging to analyse
and interpret.

B. Related Work

The increasing interest of researchers on Sexual Selection
through Mate Choice has spread its impact to various research
fields. While on EC the number of publications on the subject
is still reduced, there are a number of contributions regarding
the design and implementation of Sexual Selection through
Mate Choice that are worth reviewing. We are especially
interested in models that follow three nature-inspired rules:

1) individuals must choose who they mate with based on
their perception of others and on their own mating
preferences;

2) mating preferences are heritable the same way as phys-
ical traits;

3) mate selection introduces its own selection pressure but
is subject to selection pressure itself [9];

Several publications fall into this scope but others have
given important contributions as well. The remainder of this
section covers relevant contributions to the present work.

Eshelman et al. [10] applied an approach that relies on
a Hamming distance threshold, below which recombination
is inhibited. An alternative approach has been proposed by
Craighurst et al. [11] where similarity between individuals
is measured by their genealogical trees. Individuals sharing
ancestors to a certain degree are prevented from mating
with each other. Fernandes and Rosa [12] have studied the
two aforementioned strategies on a Genetic Algorithms (GA)
model applied to the royal road function. Results show an in-
crease in performance on both approaches, specially if coupled
with populations with varying sizes. It is also discussed that
approaches showing a greater diversity along the evolutionary



process don’t necessarily result in a better performance despite
that being the goal of both the non-random mating strategies.

Burke et al. [13] have proposed a different approach where
individuals are grouped according to their lineage. During
selection, two groups are randomly selected and one individual
is also randomly selected from each group. This approach
entirely removes the influence of fitness from the selection
process and focuses on lineage alone. Lineage selection, as
labeled by the authors, reportedly changes the dynamics of
evolution on various domains, aiming at the promotion of
diversity. On regression of Binomial-3 problems, improving
diversity resulted on worst results when compared to a stan-
dard approach. The authors discuss that combining parts of
dissimilar solutions doesn’t always result in solutions that
make sense due to nodes losing their context. They argue that
converged populations have an easier task when combining
genetic material from different individuals without them losing
context, suggesting that there should be a balance between
selection pressure and diversity handling.

Vrajitoru [14] proposed a scheme where individuals are
grouped into four genders: self-fertilizing, hermaphrodite,
female or male. Each gender is associated with its own
mating preferences, i.e. what groups they may mate with.
Two approaches are compared, either with or without fitness-
proportionate selection. It is discussed that natural selection
plays a role on determining each individual’s reproduction
mode as dominant individuals will promote their gender
through future generations.

Gustafson et al. [15] experimented with mating between
dissimilar individuals on regression of binomial-3 instances.
In the discussed work, measuring the similarity between indi-
viduals relies on the edit-distance [13], [16]. Results suggest
that the search process is equally influenced by unfit solutions
and solutions that are both fit and dissimilar. Ultimately, the
experimented approach resulted on improved solution quality.

Fernandes and Rosa [17] applied both negative and positive
assortative mating to a Vector Quantization problem using a
similarity measure that accounts for phenotype information
regarding individuals. The approach selects both a parent and a
set of mating candidates through a roulette wheel operator and
the parent mates with the most similar or dissimilar candidate.
Results show an enhanced performance on negative assortative
mating and it is argued that diversity handling is a key factor.

Ratford et al. [18] proposed a seduction function that com-
bines the fitness of the mating candidates with the Hamming
distance to the first parent. The measure benefits mating
between individuals that are neither too similar nor too dissim-
ilar. They also propose dynamically adapting the bias of the
function at each generation so that mating between dissimilar
individuals is favoured at the beginning of each run but
gradually gives space to mating between similar individuals
through the evolution process. The ability of the approach
on finding multiple solutions on multimodal problems was
assessed and results show that the proposed strategy may be
an important asset. The same research group has proposed
a seduction function that doesn’t rely on fitness but rather

on either Hamming distance, Euclidean distance or common
building block between the first parent and mating candidates
[19]. They study the approach on a set of test problems and
for the most of it, results are reported to be significantly
better. It is also discussed that either similarity measure
performed robustly without the need to rely on the fitness of
the individuals for mating purposes.

Booker [20], [21] proposed an approach where classifier
systems are allowed to mate only if they match the same
message. If no full matches are possible, partial matching
individuals are allowed to crossover. The approach was labeled
Restricted Mating. Booker [20] and Goldberg [22] have also
explored models where a tag is added to each individual’s
chromosome and mating occurs when a number of bit-
positions between a tag and other individuals are matched.
Variations such as one-way, two-way and partial matching
have been proposed as well as matching tags with templates
rather than individuals. Tags and templates are allowed to
evolve as part of the genotype.

Fry et al. [9] experimented in GP with a negative assortative
mating scheme that self-adapts along the run. They propose
that individuals choose their partners based on a function
combining fitness and dissimilarity so that mating between
dissimilar pairs is promoted. Similarity is assessed based
either on relative or absolute edit distance between individuals.
Finally, they propose applying this operator, as an alternative
to tournament selection, with a given probability. This value
adapts along the run either on a population or on an individual
level according to how successful crossover is. Results show
that self-adapting the probability of choosing between the most
fit or the most dissimilar mating partners provides a valuable
balance between exploration and exploitation that enhances
performance.

Hinterding and Michalewicz [23] tackle the constrained
optimization of a nonlinear programming problem. They
propose using a Mate Choice approach that promotes the
feasibility of individuals rather than using traditional methods
for constrained optimization. On their study, a individual is
first selected using a tournament that favors feasible individ-
uals which will then select a mating partner from a set of
candidates. By preferring mates that, in conjunction with itself,
violate the least number of constraints they aim at producing
more feasible offspring. The approach was compared with
standard constraint optimization methods achieving compara-
ble results.

Smorokdina and Tauritz have proposed a self-adaptive ap-
proach where each individual encodes its own Mate selection
function in addition to a candidate solution for the working
problem [24]. The Mate selection function is represented
using Genetic Programming (GP). The terminal nodes of
the trees are, exclusively, the remaining individuals in the
population. The non-terminals are a set of selection operators
such as tournament selection, biggest hamming distance, etc.
Constraints are enforced to make sure the operators are applied
correctly. Mate selection functions are inherited from parents
to offspring following one of two proposed rules: given that



the new offspring show improvements they inherit the function
that was actively used; otherwise, the function attributed to
new offspring is the result of the recombination of those from
both parents. Results on a set of test problems were slightly
worse than a traditional approach.

Guntly and Tauritz [25] propose two variants to a Learning
Individual Mating Preferences (LIMP) approach, either using a
centralized (C-LIMP) or a decentralized approach (D-LIMP).
LIMP has been designed for binary representations, using a
real-valued preferences vector that encodes how desirable it
is that each gene in the genotype is set to one. The D-LIMP
approach attributes a preferences vector to each individual that
is used to select mating partners. Offspring inherit the vectors
from their parents so that preferences match the genes inher-
ited from each one. Also, the vectors are adapted according to
the success of the offspring. The C-LIMP approach relies on
two centralized preferences vectors, one relative to genes set
to 0 and the other relative to genes set to 1. These vectors are
accessed by individuals when evaluating others and adapt to
match the success of the offspring in the same fashion as in
D-LIMP. Both approaches were compared with a traditional
GA and a variable dissortative mating GA, achieving better
results in part of the test set.

Machado and Leitão [26] describe a model with self-
adapting mate evaluation functions for the Circle Packing in
Squares (CPS) problem. They rely on the fact that candidate
solutions to this problem also encode candidate solutions
to smaller instances, which when assessed can be used as
indicators of good genetic quality. Apart from a candidate
solution to the problem, each individual also encodes an extra
chromosome that represents its own mating preferences. Two
approaches were tested either relying on GA or GP repre-
sentations. The GA mate evaluation function was designed as
a weighted sum matching the weights on the first individual
with the fitness values obtained by each candidate on smaller
instances of the problem. In this case only the weights are
evolved. The GP approach evolves whole evaluation functions
that are built using the fitness values from each candidate on
smaller instances as the terminal set and a set of arithmetic
operators as the function set. Results achieved by the GA
approach were poor when compared to a standard approach.
On the other hand, the GP approach was able to improve
upon the results obtained with a classical approach. The
same authors have studied a Mate Choice approach to the
optimization of Morse Clusters [27]. The approach achieved
a slightly more robust behaviour on a global level than a
standard selection scheme. The Mate Choice mechanism is
coupled with a steady state model and it is discussed that by
adapting to the replacement strategy, it is able to produce a
higher rate of valuable offspring which have a smaller yet
longer impact on the population’s structural diversity.

C. A Self-adaptive Mate Choice Approach to Symbolic Re-
gression

The approach implemented for this study encodes in each
individual its own mating preferences, which it uses to assess

other individuals for mating purposes. In order to do so, each
individual includes two chromosomes, the first representing
a candidate solution to the target problem, as in a standard
approach, and the second representing the mating preferences.
Therefore, the approach follows the first rule set in sec. II-B
since each individual will rely on its own preferences to
assess and evaluate potential partners. The second rule is
enforced by the heritability inherent in the evolution process.
The application of genetic operators on each chromosome,
independently, ensures that genetic material is passed both
regarding candidate solutions and mating preferences. Fi-
nally, the spectrum of available mating preferences impacts
the reproductive success of individuals by favoring certain
characteristics over others. The selection pressure caused by
mating preferences will ultimately impact both chromosomes
by causing the adaption of individuals to each other, therefore
adhering to the third rule.

Both chromosomes rely on a GP representation. The first
tree is mapped to a candidate solution to the target function,
once mapped this is the phenotype of the individual and hence
visible to potential mating partners. The second chromosome
encodes a tree that is mapped to a function representing
the ideal mating partner according to the preferences of the
individual. When assessing potential mating partners, each
individual compares the function that represents its ideal mate
with the phenotypes of each mating partner choosing the most
similar one. In a nutshell, evaluation of mating candidates
relies on the same mechanisms as when evaluating the first
chromosome to determine its fitness. However, instead of
comparing the function represented by the first chromosome
to the target one, it is compared to the function representing
the ideal mating partner. The differences between the ideal
mating partner and each of the candidates are measured in a
similar way as in a standard approach and the one that most
resembles the ideal mating partner is selected for mating. The
similarity measure therefore accounts for differences between
phenotypes. Traditional choices such as edit distance rely on
genotype characteristics, however, we feel that assessing others
based on their phenotypes shows a closer resemblance to
natural processes.

Algorithm 1 Parent selection using Sexual Selection through
Mate Choice

1: mate selection {
2: parent1 = parent selection(Pop)
3: candidates = mating candidates selection(Pop)
4: evaluate mating candidates(parent1,candidates)
5: parent2 = select best(candidates)
6: }

Algorithm 1 succinctly describes the selection process ap-
plied. Firstly, Parent1 is selected by means of Tournament
Selection and a number of mating candidates is randomly
sampled from the population. Secondly, Parent1 assesses the
displayed functions and chooses for mating the individual that



TABLE I
SYMBOLIC REGRESSION FUNCTIONS. U [a, b, c] REPRESENTS c UNIFORM
RANDOM SAMPLES DRAWN FROM THE INTERVAL [a, b]. E[a, b, c] IS A SET
OF POINTS EQUALLY SPACED WITH AN INTERVAL OF c, IN THE INTERVAL

[a, b].

Name Objective Function Set
Keijzer-1 [29] 0.3xsin(2πx) E[-1,1,0.1]
Keijzer-2 [29] 0.3xsin(2πx) E[-2,2,0.1]
Keijzer-3 [29] 0.3xsin(2πx) E[-3,3,0.1]
Keijzer-4 [29] x3e−xcos(x)sin(x)(sin2(x)cos(x)− 1) E[0,10,0.1]
Koza-1 [30] x4 + x3 + x2 + x U[-1,1,20]

Nguyen-5 [31] sin(x2)cos(x)− 1 U[-1,1,20]

best matches its ideal partner. Afterwards, the pair generate
offspring by means of GP operators applied independently to
each chromosome and the new individuals are introduced into
the population of the new generation. The process is repeated
until the new population is complete.

This process illustrates how the attractiveness of each in-
dividual influences its reproductive success. Genes that are
coupled with good mating preferences have a better chance
of being mixed with good quality genes during reproduction,
therefore increasing their chance of spreading through future
generations. On the other hand, mating preferences coupled
with attractive genetic material are also more prone to success-
fully spread. The resulting feedback-loop causes individuals in
the population to not only adapt to the environment but also
to each other in a struggle for reproduction. The success of
the approach therefore relies on its ability to evolve mating
preferences that help choose partners in ways that benefit the
evolution process.

III. RESULTS

The following subsection details the experimental setup
applied to study the effects of Sexual Selection through Mate
Choice and the proposed approach on Symbolic Regression.
The results are then analysed and discussed.

A. Experimental Setup

Experiments were conducted on symbolic regression tar-
geting a set of functions mixing the six functions displayed
in Table I. The decision to tackle this particular subset relies
mostly on their inclusion and discussion on the publication
regarding GP benchmarking by McDermott et al. [28].

Three approaches were considered: Standard approach
where both individuals are selected using tournament selection
and mating preferences take no part; a Random approach
where the first parent is selected by means of tournament
selection but its pair is selected randomly; the proposed
approach where the first parent is selected through tournament
selection and chooses from a pool a candidates the one that
best resembles its ideal mating partner.

At each run, the Keijzer functions evolve a population of
100 individuals while for both the Koza and the Nguyen
functions, populations of 500 individuals are evolved. The
populations evolve for 100 generations. Tournament size has
been set to 5 individuals and the number of mating candi-
dates has also been set to 5. Crossover is applied on the

TABLE II
MEAN BEST FITNESS OBTAINED BY THE STANDARD, MATE CHOICE AND

RANDOM APPROACHES ON EACH FUNCTION OVER 50 RUNS.

Function Standard Mate Choice Random
Keijzer-1 0.008005462 0.0059473756 0.0072442644
Keijzer-2 0.0063776454 0.0052139161 0.0062104645
Keijzer-3 0.0071500245 0.0056003145 0.0067438776
Keijzer-4 0.0890397335 0.0833904122 0.0840754187
Koza-1 0.0006384168 0.0014386396 0.0006481816

Nguyen-5 0.0014892713 0.0004783439 0.0025763115

selected parents, independently on the first and the second
chromosomes, with a probability of 90% and is 90% biased to
function nodes and 10% biased to terminal nodes as crossover
points [30]. Elitism is also imposed so that the best individual
of each generation is included in the next one. Information
regarding the terminal and non-terminal sets can be found in
McDermott’s publication [28] and implementation details can
be found in each of the articles describing the functions [29]–
[31].

A total of 50 runs are executed for each approach and data
regarding the fitness and the number of individuals resulting
from destructive crossover are recorded for analysis. In this
study, an individual is considered to be the result of destructive
crossover if its fitness is worst than the fitness of the parent
that actively chose a mate. An individual is considered the
result of a neutral crossover if its fitness is equivalent to the
fitness of the parent that actively chose a mate.

B. Analysis and Discussion

Table II shows a comparison of the Mean Best Fitness
(MBF) obtained by each studied approach on each func-
tion along 50 runs. A Wilcoxon Mann Whitney test with
a significance level of 0.01 was conducted, comparing each
approach with the remaining two. The instances where the
proposed approach performed significantly better than the
Standard approach or the other way around are presented in
bold in Table II. Regarding the Random approach, it performed
significantly better than the Mate Choice approach on the
Koza-1 instance but worst on Keijzer-1, Keijzer-2 and Keijzer-
3 as well as on the Nguyen-5.

The Koza-1 instance is regarded as a particularly easy
instance for symbolic regression [28] which may explain the
results obtained, specially if the large size of the population
is considered. The results suggest that the overhead created
by the Mate Choice model does not payoff. The extra effort
put on the evolution process to adapt mating preferences, as
seen in Figure 1, slows down convergence, giving the Standard
approach the observed advantage. Regarding the Nguyen-5
function, the three approaches performed considerably better
than on the Keijzer instances. While the instance is not
regarded as particularly simple for symbolic regression, the
use of a population with 500 individuals may explain why the
approaches were able to achieve better MBFs. In this case,
the Standard approach seems able to benefit from a larger,
and likely more diverse, population and achieve a lower MBF
than the Random approach. Still, Mate Choice was able to
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Fig. 1. Mean Best Fitness obtained along 50 runs for the Koza-1 function

TABLE III
MEAN CUMULATIVE DESTRUCTIVE CROSSOVERS OBTAINED BY THE

STANDARD, MATE CHOICE AND RANDOM APPROACHES ON EACH
FUNCTION OVER 50 RUNS.

Function Standard Mate Choice Random
Keijzer-1 6013.14 7062.88 6484.58
Keijzer-2 5892.56 7149.06 6929.12
Keijzer-3 6173.56 7198.2 6808.86
Keijzer-4 5968.18 7239.4 6805.04
Koza-1 34889.32 36399.72 36797.82

Nguyen-5 27597.62 34656.84 30013.76

outperform the Standard approach with a significant MBF
difference.

The Mate Choice approach achieved a significantly bet-
ter MBF value than the Standard approach on the Keijzer
instances as well, suggesting that the proposed strategy is
able to contribute to enhancing results. Despite the generated
overhead on the evolution process, the approach seems capable
of evolving mating preferences that favour mating partners
in a way that is beneficial to the evolution process. Overall,
the differences in MBFs between the proposed approach
and the Random approach are quite noticeable, emphasizing
that the behaviour produced by the Mate Choice strategy
is not similar to randomly selecting mating partners, but a
behaviour that produces larger benefits, therefore backing up
our assumption that Mate Choice evolves mating preferences
that help selecting mating partners in meaningful ways. It’s
also noticeable that while no significant differences were
found between the Standard and the Random approaches, the
later performs slightly but consistently better on the harder
instances (Keijzer-1 to Keijzer-4), suggesting that the reduced
selection pressure inherent may be beneficial, allowing for
a better exploration rather than exploitation of the fittest
individuals. Different studies explore selection pressure, one
where different schemes are coupled with the ideas of Sexual
Selection and compared has been conducted by Wagner and
Affenzeller [32].

Tables III and IV further highlight behavioural differences
between the studied approaches. Table III shows the mean cu-
mulative number of destructive crossovers (MCDC) obtained
along the 50 runs by each approach while Table IV shows the

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0  10  20  30  40  50  60  70  80  90  100

Fi
tn

e
ss

Generation

Average Fitness

standard
matechoice

random

Fig. 2. Mean Best Fitness obtained along 50 runs for the Keijzer-3 function

TABLE IV
MEAN CUMULATIVE NEUTRAL CROSSOVERS OBTAINED BY THE

STANDARD, MATE CHOICE AND RANDOM APPROACHES ON EACH
FUNCTION OVER 50 RUNS.

Function Standard Mate Choice Random
Keijzer-1 3124.6 1760.94 2524.54
Keijzer-2 3278.84 1708.12 2060.58
Keijzer-3 2852.96 1741.4 2187.86
Keijzer-4 2997.26 1528.56 2169.32
Koza-1 8666.42 8016.44 7397.52

Nguyen-5 17749.86 10583.78 15592.58

mean cumulative number of neutral crossovers (MCNC). A
Wilcoxon Mann Whitney test with a significance level of 0.01
was conducted, comparing each pair of approaches. Instances
where the Mate Choice approach achieved a significantly
higher MCDC or a significantly smaller MCNC than the
Standard approach are depicted in bold.

A brief perusal of Tables III and IV reveals that Mate
choice consistently results in a higher MCDC than the standard
approach. Conversely, it attains lower MCNC on all instances
where it outperformed the other approaches. On the Koza-
1 instance, probably due to its simplicity, the approach that
performed the smallest MCDC was able to outperform the
others as candidate solutions are likely to evolve faster and
further towards the target function by means of successful
crossovers. Although correlation does no imply causality, these
results suggest that the explanation for the success of the
Mate Choice approach may rest on the reduction of neutral
crossover. Individuals that result from neutral crossovers make
no contribution to fitness enhancements and may ultimately
stall evolution and decrease diversity. The higher MCDC
obtained by Mate Choice may be explained by the stochasticity
it introduces in the mate selection process. Additionally, Mate
Choice is outperforming other approaches and, as such, the
results are inherently more difficult to improve.

Due to lack of space, further analysis will focus on a single
function. However, the discussed behaviours generalize to the
other instances with the exception of the Koza-1, where the
Standard approach performs better. We have chosen to focus
on the Keijzer-3 function. Figure 2 shows how the MBF
evolves along the 100 generations while Figures 3 and 4 show
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Fig. 4. Mean of Neutral Crossovers obtained along 50 runs for the Keijzer-3
function

the mean of destructive crossovers and the mean of neutral
crossovers at each generation and how they evolve along the
runs.

Figure 2 shows that the MBF rapidly evolves for the
Standard approach for the first 5 or so generations, probably
taking advantage of the initial population diversity. Figure 3
shows that for this period, the mean of destructive crossovers
also raises rapidly, stabilizes and then gradually descends for
the remaining of the generations. The behaviour suggests that,
from this point on, the Standard approach promotes crossover
between fit solutions. Individuals have a greater chance of
promoting their genetic material by mating with fit partners,
those who are unable to do so are gradually discarded and no
longer contribute to evolution. This behaviour is supported by
Figure 4 which shows that the Standard approach produces a
gradually higher mean of neutral crossovers. This is consistent
with a decreasingly diverse population where a small number
of individuals takes over. As a result, while fitter individuals
gradually mate with other fit individuals, their impact on the
evolution process is reduced and advances are made slowly as
individuals exploit a smaller set of genes.

The Mate Choice approach, as shown by Figure 2, has
a slower MBF evolution on the first generations, surpassing

however the Standard approach at around the 10th generation.
Figure 3 shows that by generation 10, the Mate Choice
approach is producing more destructive crossovers than the
Standard approach. While mating between fit and similar
solutions is less likely to cause destructive crossovers, mating
with unfit or dissimilar individuals is more likely to produce
destructive crossovers as genes mix either with worst genes
or with genes from different contexts. The Mate Choice
approach seems to promote this behaviour along the runs,
causing the mean of destructive crossovers to remain steady
for the remainder of the generations. However, as seen by
Figure 2 and by Table II, such a behaviour has a positive
impact on the MBF, likely the result of a better exploration
through the contribution of genes from less fit or dissimilar
individuals. Figure 4 supports this behaviour as a smaller
mean of neutral crossovers is observed on the Mate Choice
approach throughout the entire run. Thus, in the considered
experimental settings, the Mate Choice strategy promotes risk-
taking resulting in higher MCDC and lower MCNC and taking
risks is beneficial in the most complex problem instances.

When comparing the Mate Choice approach with the Ran-
dom one, both regarding the mean of destructive crossovers
and the mean of neutral crossovers, it is noticeable that
the produced behaviours happen with a different frequency,
indicating that the evolution of mate preferences has an impact
on the behaviour of the algorithm. The results reported in Table
II and the analysis of Figure 2 show that such an impact is
positive for the performance of the evolutionary process.

IV. CONCLUSIONS

Evolutionary Computation is an ongoing research field
where, just like in Evolutionary Theory, new ideas are con-
stantly introduced and experimented. While many research
fields have come to study and embrace the theory of Sexual Se-
lection, its impact on Evolutionary Computation and inherent
effects are yet not fully understood. During this study we ex-
plore a nature-inspired Mate choice mechanism and analyse its
effects on Evolutionary Algorithms. A comprehensive review
of the background of Sexual Selection and more specifically
Mate Choice is included as well as an extended review of
related work and applications on Evolutionary Computation.

A self-adaptive Mate Choice approach to Symbolic Re-
gression is proposed, following three nature inspired rules:
individuals must choose who they mate with based on their
perception of others and their own mating preferences; mating
preferences are inherited the same way as physical traits; mate
selection introduces its own selection pressure but is subject
to selection pressure itself.

A representation of mating preferences as an extra chro-
mosome on each individual is introduced and the means by
which they are used to assess mating candidates and select the
most desirable mating partners are presented. The mechanisms
and operators by which mating preferences are inherited and
undergo evolution are also discussed. A test suite is introduced
and implementation details are presented. Three approaches



are experimented and compared: Standard, Mate Choice, and
Random.

The obtained results show that the Mate Choice approach
is able to significantly outperform the other two on complex
instances of Symbolic Regression. The behaviour of the ap-
proach is discussed and contrasted with the behaviour obtained
by the Random and the Standard approaches, showing that the
Mate Choice approach is able to evolve mating preferences
that choose mating partners in meaningful ways, actively
contributing to an enhanced performance by the Evolutionary
Algorithm on the target problem.

Future work may include applying the presented model on
a larger function set as well as studying the genealogical trees
of the individuals, how mating preferences evolve and affect
the evolution of candidate solutions.
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“Semantically-based crossover in genetic programming: application to
real-valued symbolic regression,” Genetic Programming and Evolvable
Machines, vol. 12, no. 2, pp. 91–119, 2011.

[32] S. Wagner and M. Affenzeller, “Sexualga: Gender-specific selection for
genetic algorithms,” in Proceedings of the 9th World Multi-Conference
on Systemics, Cybernetics and Informatics (WMSCI), vol. 4. Citeseer,
2005, pp. 76–81.


