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ABSTRACT
Sexual Selection through Mate Choice has, over the past few
decades, attracted the attention of researchers from various
fields. They have gathered numerous supporting evidence,
establishing Mate Choice as a major driving force of evo-
lution, capable of shaping complex traits and behaviours.
Despite its wide acceptance and relevance across various re-
search fields, the impact of Mate Choice in Evolutionary
Computation is still far from understood, both regarding
performance and behaviour.

In this study we describe a nature-inspired self-adaptive
mate choice model, relying on a Genetic Programming rep-
resentation tailored for the optimization of Morse clusters,
a relevant and widely accepted problem for benchmarking
new algorithms, which provides a set of hard test instances.
The model is coupled with a state-of-the-art hybrid steady-
state approach and both its performance and behaviour are
assessed with a particular interest on the replacement strat-
egy’s acceptance rate and diversity handling.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem solving, Control
Methods, and Search—Heuristic Methods

General Terms
Algorithms, Design

Keywords
Evolutionary Algorithms, Genetic Programming, Sexual Se-
lection, Mate Choice, Self-adaption, Cluster Geometry Op-
timization

1. INTRODUCTION
Darwin has proposed two complementary theories account-

ing for the evolution of species: Natural Selection [5] and
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Sexual Selection [6]. Natural Selection was described as
the result of competition within or between species affect-
ing its individuals rate of survival, while Sexual Selection
resulted from the competition between individuals of the
same species affecting their relative rate of reproduction.

While Natural Selection was widely accepted and endorsed
by the scientific community, Sexual Selection was discredited
as a curiosity rather than an influential theory. However, in-
terest arose in the 1970s through the works of Fisher [9, 10]
and Zahavi [30] and an increasing number of researchers have
put their efforts on exploring the subject of Sexual Selection.
Among the processes that compose Sexual Selection, Dar-
win was most focused on Mate Choice [6] as were some of
his most preeminent followers [9, 10, 30] and many present
day researchers. Nowadays, Mate Choice is highly regarded
across various research fields and widely accepted as a major
force in evolution [1, 2]. While it has come a long way on
other research fields, the effects of Mate Choice on Evolu-
tionary Computation are still far from understood, requiring
further research on both performance and behaviour.

Cluster geometry optimization (CGO) has important ap-
plications in Nanoscience, Physics, Chemistry and Biochem-
istry [32]. Finding the geometry of a cluster such that its
potential energy is minimized is a NP-hard task [4]. More-
over, the problem provides a large set of difficult test in-
stances and has been widely used for benchmarking the effi-
ciency of global optimization algorithms [4, 7, 12, 14, 23, 24,
25]. The most relevant models are Lennard-Jones clusters
[17] and Morse clusters [21], mostly because their modeling
functions depend solely on the distance between every pair
of particles in the cluster. Optimization of Morse clusters is
regarded as a particularly tough problem, specially if used
to model short range interactions between particles [8].

Evolutionary Algorithms (EA) have been first applied to
CGO problems in the early 1990s [14] and are currently con-
sidered state-of-the-art approaches. Several breakthroughs
have been achieved since then, such as coupling the algo-
rithms with local-search methods to relax individuals into
the nearest local optima [7, 12, 14, 25]. The base algorithm
adopted in this study has been proposed by Pereira et al.
[24], who suggested that maintenance of diversity may be a
key-point to efficiency when tackling CGO [23, 24].

In this study we apply Sexual Selection through Mate
Choice to the optimization of Morse clusters using an unbi-
ased hybrid steady-state EA combined with a single phase
local-search method. The study aims at two goals: assessing
performance on a hard optimization problem; getting insight
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on how Mate Choice affects the behaviour of the algorithm
in terms of diversity and acceptance rate.

The following section introduces the subject of Mate Choice,
briefly covering its background and reviewing related work
in EAs. Section 3 introduces Morse clusters optimization,
examines important contributions and describes a hybrid
steady-state EA tailored for tackling the problem. It finally
describes a Mate Choice approach for the optimization of
Morse clusters. Section 4 covers the experimental setup and
the results are thoroughly analyzed and discussed. Section
5 presents our conclusions and future work.

2. SEXUAL SELECTIONTHROUGHMATE
CHOICE

Since publishing his theory of Natural Selection, Darwin
was intrigued with animal ornamentation and courtship be-
haviours. Natural Selection would only favor traits that
benefit the survivability of individuals and therefore could
not explain the emergence of costly and complex traits that
he observed across different species and which seemed to
make no contribution to survival. He knew however that
such traits had to bring evolutionary advantage in order to
spread along the generations. Considering that these traits
appeared to be related to mating behaviour, Darwin envi-
sioned that there must be a trait-shaping selection feature
other than Natural Selection accounting for the emergence
of traits that bring advantage in mating rather than survival.

While Natural Selection adapts species to their environ-
ment [5], Sexual Selection adapts individuals in relation to
others in a competition for mating partners [6]. Failing to
find suitable mate(s) results in few or no offspring rather
than death. However, from an evolutionary perspective,
failing to reproduce or to survive have mostly the same out-
come: the long term survivability of the genes is jeopardized.

Darwin described two main processes in Sexual Selection:
male competition and female mate choice, the latter being
the scope of this study. Darwin’s ideas on Mate Choice
explained the emergence of traits in males through adap-
tion to female mating preferences [6]. Males that are better
adapted to the tastes of females attain a higher reproduction
rate. Various contributions followed, the most important
arguably by Fisher, who explained how mating preferences
evolve and are heritable the same way as physical traits [9,
10]. He also introduced the idea that ornamentations evolve
as indicators of fitness (health, energy, etc.), and that fe-
males who are able to choose males with good genetic qual-
ity will produce healthier offspring that will reinforce both
the inherited mating preferences and physical traits [9]. Fi-
nally, he showed how mating preferences and physical traits
influence each other through a positive feedback loop [10].

Over the years, a number of publications have arisen cov-
ering different ideas regarding the design and implementa-
tion of Mate Choice in EAs. We are interested in models
that follow three nature-inspired rules:

1. individuals must choose who they mate with based on
their perception of others and on their own mating
preferences;

2. mating preferences are heritable the same way as phys-
ical traits;

3. mate selection introduces its own selection pressure
but is subject to selection pressure itself [11];

Several publications fall into this scope.
Hinterding and Michalewicz [16] tackle the constrained

optimization of a nonlinear programming problem. Instead
of relying on traditional methods for constrained optimiza-
tion, they propose using a Mate Choice approach that pro-
motes the feasibility of individuals. The first parent is se-
lected using a tournament that favors feasible individuals.
It will then select a mate from a candidate pool by prefer-
ring mates that, in conjunction with itself, violate the least
number of constraints. Therefore, individuals that best com-
plement the first parent are promoted in hope of increasing
feasibility. The approach was compared with standard con-
straint optimization methods achieving comparable results.

Smorokdina and Tauritz have proposed a self-adaptive ap-
proach where each individual encodes its own Mate selection
function in addition to a candidate solution for the working
problem [28]. The Mate selection function is represented
using Genetic Programming (GP). The terminal nodes of
the trees are, exclusively, the remaining individuals in the
population. The non-terminals are a set of selection opera-
tors such as tournament selection, biggest hamming distance,
etc. Constraints are enforced to make sure the operators
are applied correctly. Mate selection functions are inherited
from parents to offspring following one of two proposed rules:
given that the new offspring show improvements they inherit
the function that was actively used; otherwise, the function
attributed to new offspring is the result of the recombination
of those from both parents. Results on a set of test problems
were slightly worse than a traditional approach.

Guntly and Tauritz [13] propose a Learning Individual
Mating Preferences (LIMP) approach with two variants: us-
ing a centralized mating preferences vector (C-LIMP) and
a decentralized approach (D-LIMP). LIMP is tailored for
problems with binary representation, using a real-valued
preference vector, with the same size as the genotype, to
encode in each position how desirable it is that the corre-
sponding gene is set to one. In D-LIMP each individual en-
codes its own preference vector, used to evaluate others. Off-
spring inherit their parents’ preferences so that they match
the genes inherited from each parent. In addition, the pref-
erence vectors are updated based on the relative success of
the offspring. The C-LIMP uses 2 preference vectors com-
mon to the whole population, the first relative to genes set
to 0 and the second to genes set to 1. When an individ-
ual assess others, it checks either vector based on its own
genotype. At each reproduction step, the vectors are up-
dated in a similar way as in D-LIMP. Both approaches were
compared with a traditional GA and a variable dissortative
mating GA, achieving better results in part of the test set.

Machado and Leitão [20] have addressed self-adaption of
mate evaluation functions on the Circle Packing in Squares
(CPS) problem. In this problem, candidate solutions to a
given instance also encode candidate solutions to smaller in-
stances. How an individual performs on smaller instances of
the CPS problem can be used as indicators of genetic qual-
ity, carrying information about how they may contribute
to healthy offspring. Apart from a candidate solution to
the problem, each individual encodes an extra chromosome
representing its own mating preferences. Two models were
tested either relying on Genetic Algorithms (GA) or GP. The
GA mate evaluation function was designed as a weighted
sum matching the weights on the first individual with the fit-
ness values obtained by each candidate on smaller instances

958



of the problem and evolving only the weights. The GP ap-
proach evolves whole evaluation functions that are built us-
ing the fitness values from each candidate on smaller in-
stances as the terminal set and a set of arithmetic operators
as the function set. Results achieved by the GA approach
were poor when compared to a standard approach. On the
other hand, the GP approach was able to improve upon the
results obtained with a classical approach.

3. MORSE CLUSTERS OPTIMIZATION
The Morse potential is the N-particle additive function

defined by Eq. 1. As in previous studies [22, 24, 4] we have
adopted a scaled version of the Morse potential by setting
both the bond dissociation energy, ǫ, and the equilibrium
bond length, r0, to 1. The range exponent of the potential,
β, has a strong influence on the character of the potential
energy surface (PES), the multidimensional function that
describes the interactions between the particles in the clus-
ter. As the value of β is increased, the PES is much more
likely to assume a multiple-funnel character with an increas-
ing number of local minima [22, 8]. In this study we have
set β = 14 which corresponds to short range interactions [8],
regarded as particularly tough. Therefore, rij is left as the
only variable in Eq. 1, resulting on a function that depends
only on the distance between particles.

VMorse = ǫ

N−1
∑

i

N
∑

j>i

{exp[−2β(rij − r0)]

− 2exp[−β(rij − r0)]} (1)

3.1 Related Work
This section covers key achievements on CGO. An overview

of EA approaches has been published by Hartke [15].
Morse clusters optimization was first tackled by Doyes

and Wales [22] who applied a basin-hopping algorithm and
report finding all but 12 putative optima on clusters ranging
up to 80 atoms. Roberts et al. [27] applied an EA which
combined a real-valued representation [31] with a Cut and
Splice crossover operator (C&S) [7] and Lamarckian local
optimization [7]. They achieved most of the putative optima
on Morse clusters consisting of 19 to 50 atoms.

Locatelli and Schoen proposed using a two-phase local
search algorithm designed to tackle multi-funnel charactered
PESs [19]. Their algorithm would on a first phase perform
local optimization on a modified potential function combin-
ing knowledge from the true PES and the geometric struc-
ture of the putative solution thus biasing the search toward
local optima with specific proprieties and helping search on
the true PES during the second step. The algorithm was
coupled with a basin-hopping approach and applied to Morse
clusters [8], finding all putative optima on clusters ranging
from 41 to 80 atoms. The two-phase algorithm has also been
combined with a population-based algorithm [12].

Despite the success of these approaches, they depend on a
number of parameters that need to be set a priori and that
rely on information regarding the target solution. This raises
questions concerning bias and their performance when such
information is unknown. Two self-adaptive approaches have
been proposed to overcome this setback. Cassioli et al. [3]
presented a population basin-hopping algorithm where the
required parameters are encoded in each individual as weight

factors that undergo self-adaptation. Pereira and Marques
[23] proposed encoding in each individual the parameters to
be applied in their own local-search method, starting with
random values that adjust online. These approaches success-
fully remove the need of setting the parameters beforehand
despite causing a reduction on the success rate when applied
to Morse clusters ranging up to 80 atoms.

On the same study, Pereira and Marques discussed that
the success of their approach was mostly the result of an
increased diversity induced by the self-adaption of parame-
ters. A later study by Pereira et al. [24] applied an unbiased
hybrid steady-state EA coupled with an unbiased single-
phase local optimization procedure and reports finding all
putative optima on Morse clusters consisting from 41 to 80
atoms. They show that an unbiased hybrid EA can success-
fully tackle such problems and that maintenance of diversity
is a key-factor in doing so.

3.2 A hybrid steady-state EA for Morse clus-
ters optimization

The aforementioned study by Pereira et al. [24] intro-
duced the base algorithm of this research. The Mate Choice
approach applied in this study introduces however some
changes as it relies on individuals composed of two chro-
mosomes. The first chromosome encodes a candidate solu-
tion for the optimization of Morse Clusters while the second
chromosome represents each individual’s function for assess-
ing mating candidates. The remaining of this section relates
to the first chromosome and other components of the algo-
rithm. Specifics of the Mate Choice approach and the second
chromosome are introduced in Sect. 3.3.

3.2.1 Representation
A cluster with N atoms on the 3D space is represented

as a 3×N real valued array that encodes the Cartesian co-
ordinates of the particles. Each gene ranges between 0 and
N1/3 which is widely accepted to allow the correct scaling
of the cluster volume with N [24, 31]. Restrictions are en-
forced on the distance between each pair of particles during
initialization and when genetic operators are applied as to
avoid excessively repulsive potentials that result from too
small distances. Only solutions where distances are larger
than a pre-specified parameter, δ = 0.5, are allowed.

3.2.2 Genetic operators
Both crossover and mutation operators specifically tai-

lored for CGO are applied. A generalized C&S operator,
proposed by Pereira et al. [26] ensures that parents con-
tribute with particles that are placed close together while
sigma mutation [26], applied to offspring, acts on one parti-
cle at each time. The new location is obtained by disrupting
its coordinates on the 3D space with values sampled from a
Normal distribution with mean 0 and standard deviation σ.

3.2.3 Local optimization
The limited memory Broyden-Fletcher-Goldfarb-Shanno

(L-BFGS) method, which relies on first order derivative in-
formation, guides individuals into the nearest local opti-
mum. The generic element n of the Morse potential gradient
is obtained through Eq. 2 where xni represents the differ-
ence between the Cartesian coordinates of particles n and
i, xni = xn − xi. Similar expressions apply to the y and z
axis. L-BFGS is applied to every generated individual prior
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to evaluation and executes until it finds a local optimum or
until it reaches a maximum number of iterations, the Local
Search Length (LSL). The accuracy of the method as been
set to 1.0E − 8.

gn = −2βǫ

N
∑

i6=n

(

xni

rni

)

{exp[−2β(rni − r0)]

− exp[−β(rni − r0)]} (2)

3.2.4 The population
Individuals evolve as a steady-state model where two off-

spring are generated at each step and compete with the
remaining individuals for a place in the population. This
procedure is repeated until a termination criterion is met.
Such a model requires a replacement strategy that controls
which offspring are allowed in the population and which in-
dividuals perish in return. The one applied in this study is a
fitness-based strategy that includes mechanisms which aim
at maintaining diversity [18]. Briefly, given an individual X
already locally optimized and evaluated, if the population
contains an individual Y that is closer to X than a prede-
fined value dmin, then only the best one is kept. Otherwise,
X is different from all other solutions and will replace the
worst one, given that X is better. In order to perceive if in-
dividuals are close, a distance measure d(X,Y ) is required,
reflecting the similarity between individuals.

3.2.5 The diversity measure
This study relies on a measure based on the distances of

particles to the cluster’s center of mass, as first proposed by
Grosso et al. [12], which expresses the structural dissimi-
larity between individuals. The choice was made based on
the analysis by Pereira et al. [24]. Briefly, for each cluster,
the distances from the particles to the center of mass are
ordered in a vector in a non-decreasing fashion. Given two
clusters and the respective ordered vectors OrdX and OrdY ,
d(X,Y ) is given by Eq. 3. To estimate dmin, information
provided by the initial population is used according to Eq. 4
where Pop represents the size of the population, d(X,Y ) the
distance between individuals X and Y and ζ corresponds to
the proportion among the average distance calculated with
a set of randomly generated individuals and the minimum
allowed distance between each pair. ζ has been set to 0.25.

dord(X,Y ) =
1

10

N
∑

i=1

|(OrdX (i)−OrdY (i))|3 (3)

dmin = ζ ×

∑Pop−1

X=1

∑Pop
Y =X+1

d(X,Y )
1

2
(Pop2 − Pop)

(4)

3.3 A mate choice approach to the optimiza-
tion of Morse Clusters

As introduced in Sect. 3.2.1, each individual is composed
of two chromosomes. The first is a GA vector that rep-
resents a candidate solution to the optimization of Morse
clusters. The second is a GP tree that represents the func-
tion used by each individual to assess its mating candidates.
The selection process is succinctly described in Alg. 1. Par-
ent 1 is selected using a fitness based tournament selection
ad a set of mating candidates is selected randomly. Parent

Algorithm 1 Parent selection using Sexual Selection
through Mate Choice

1: mate selection {
2: parent1 = parent selection(Pop)
3: candidates = mating candidates selection(Pop)
4: evaluate mating candidates(parent1,candidates)
5: parent2 = select best(candidates)
6: }

1 evaluates each of the candidates using its own evaluation
function. The candidate that seems the most attractive, i.e.
the one for which the GP tree of Parent 1 returns the lowest
value, is selected for mating. Since CGO is a minimization
problem, we have opted to select the candidate with the low-
est attractiveness value as the best one. When reproduction
occurs, offspring inherit genetic material from both parents,
resulting from GA operators acting on the first chromosomes
and GP operators acting on the second ones.

In order for individuals to assess others, they perceive
problem-specific information regarding their phenotype. As
described in sect. 3.2, when tackling the optimization of
clusters of size N, individuals encode the positions of N par-
ticles, meaning that they also encode candidate solutions to
each N − 1 smaller clusters. How an individual performs on
each of these clusters is an indicator of gene quality, show-
ing how they may contribute to the optimization of N sized
clusters. However, optimal solutions to clusters with differ-
ent sizes can correspond to different geometric motifs. Thus,
performing well on a N − i sized cluster does not necessar-
ily translate into good genes for the optimization of the N
sized cluster. Without access to the cluster motifs it is dif-
ficult to build a function that uses this information in an
appropriate way. We expect to self-adapt functions that do
so in a meaningful way for the purpose of selecting mating
partners.

Coupling a self-adaptive Mate Choice approach with a
steady-state EA raises an interesting discussion point. Both
mating preferences and physical traits evolve in a feedback
loop, promoting those that bring reproductive advantage
and causing individuals to continuously adapt to each other.
The replacement strategy will however discard individuals
that do not meet its constraints. Mating preferences that
are unable to select adequate mating partners and produce
offspring that are accepted into the population will therefore
be incapable of spreading and gaining evolutionary advan-
tage. On the other hand, accepted individuals will inherit
and successfully promote both mating preferences and phys-
ical traits. Ultimately, the replacement strategy guides the
evolution process. We expect mate evaluation functions to
evolve accordingly and promote offspring that successfully
integrate the population, therefore contributing to progress.

4. EXPERIMENTAL RESULTS
This section firstly describes the test setup applied in this

study, followed by an analysis of both behaviour and perfor-
mance.

4.1 Experimental Setup
The standard approach evolves a population of 100 in-

dividuals for 5.000.000 evaluations. Each iteration of the
L-BFGS method counts as one evaluation. LSL is set to
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1.000. Selection of both parents is done through a tourna-
ment of size 5, followed by crossover, applied with a rate of
70%, and mutation, applied with a rate of 5% [24]. Also

σ = 0.05 × N1/3. Experiments were repeated 30 times for
Morse clusters ranging from 41 to 80 particles. Finally, for
analysis purposes, for every 100 individuals bred a genera-
tion counter is incremented.

In the Mate Choice approach, the first parent is selected
through a tournament of 5 individuals. Then, a pool of 5
mating candidates is randomly selected from the population
and the second parent is chosen following Alg. 1. Repro-
duction occurs by means of operators applied independently
to each chromosome. The operators described in sect. 3.2.2
are applied to the first chromosome and crossover and muta-
tion are applied to the second chromosome with the rates of
85% and 5% respectively. The terminal set of the GP trees is
composed by the constants {−1, 2} and 5 dynamic terminals.
These dynamic terminals correspond to smaller instances of
the target cluster so that they are equally spaced in the in-
terval [1, N − 1]. When a mating candidate is assessed, the
dynamic terminals in the active function translate to the
fitness obtained by the candidate on the corresponding in-
stance. The non-terminal set consists on the following arith-
metic functions: {+,−, ∗, /}. Experiments were repeated 30
times for Morse clusters ranging from 41 to 80 particles.

Performance of state-of-the-art approaches for tackling
CGO problems is often measured based on the success rate
of the runs [24, 8, 12], therefore, we register the number of
runs where the putative optima was found for each instance
of the problem. Also, in order to analyze the behaviour of
our approach, the following elements were registered on each
run: best fitness, average fitness, number of substitutions
and average dissimilarity between individuals.

4.2 Analysis and Results
The success rates obtained by the studied approaches can

be found in Table 1, where the label Sexual Sel. corresponds
to our approach and the label Standard corresponds to the
results reported in the study by Pereira et al. [24]. Our ap-
proach was able to find all putative optima on Morse clusters
ranging from 41 to 80 atoms as well as outperform the Stan-
dard approach in 20 instances of the problem. On the other
hand it achieved smaller rates in 13 instances and 7 ties. The
pairwise proportions test proposed by Taillard et al. [29]
was conducted with a significance level of 0.01 and signifi-
cant differences were found on 4 instances which have been
emphasized in Table 1. There is an obvious evolutionary
overhead introduced by the evolution of Mate Choice func-
tions: unless good mating choice functions are found, the
ability of individuals to select appropriate mates is hindered,
which could significantly delay evolution. While no signifi-
cant differences were found on the majority of the instances,
the proposed approach was able to attain competitive and
sometimes better results than the standard approach, which
indicates that the algorithm, in spite of the aforementioned
overhead, is able to evolve mate choice functions that assess
individuals in meaningful and advantageous ways.

The means by which the algorithm is able to take advan-
tage of the mate choice process are not straightforward to
analyze. Figure 1 shows an example of a GP tree evolved for
the purpose of selecting mating partners. While the algo-
rithm has evolved much larger trees, the presented one still
serves the purpose of showing that interpreting the meanings
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Figure 1: Example of a GP tree evolved for mating

selection

Figure 2: Average substitution rate from 30 runs

with clusters of size 61, where close corresponds to

individuals replacing a similar one in the population.

of the evolved trees is not an easy task. An analysis of the
example in Fig. 1 leads us to conjecture that how individuals
perform on the optimization of clusters sizing 24, 48 and 60
atoms is relevant for the individual owning this tree. How-
ever, how these terminals relate with each other and how
much they weigh in the process of choosing a mate depends
on how non-terminals act on them, which often prevents
us from attributing meaning to the terminals. This makes
the analysis of the evolved mate selection functions an often
frustrating task, specially on larger trees. Still, we can draw
two conclusions from the obtained results and tree analysis:
the provided terminal and non-terminal sets can be com-
bined in useful ways for mate selection; evolved functions
allow individuals to choose their partners in unforeseeable
ways which we would unlikely be able to design on our own.

While the inner workings of Mate Choice are difficult to
analyze, its impact on the behaviour of the algorithm is quite
noticeable. Experiments were conducted in order to measure
the impact of Mate Choice on the acceptance rate as well as
on the structural diversity of the population, two relevant
aspects on the Standard approach. The following discus-
sion will focus on Morse clusters consisting of 61 atoms, an
instance that is considered particularly tough [8, 12].

Figures 2 and 3 compare the acceptance rates of individ-
uals on both approaches. The replacement strategy has a
powerful role in the steady-state model since it determines
which of the offspring are allowed in the population. Ulti-
mately, the progress of the evolution process is determined
by how well it is able to adapt to the restrictions imposed by
the replacement strategy and its capabilities to continuously
produce offspring that are included in the population. Fur-
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Table 1: Success rate obtained by the Standard and the Mate Choice approaches on clusters of size N

N 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

Sexual Sel. 24 21 18 18 12 14 6 16 16 2 2 9 4 7 7 11 9 5 3 7

Standard 15 12 14 7 5 9 2 14 18 5 7 6 5 12 6 11 8 4 2 0

N 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

Sexual Sel. 1 6 8 8 9 10 5 3 6 6 6 3 6 5 5 3 3 4 2 5
Standard 1 12 6 11 8 8 5 4 6 8 6 7 6 1 2 4 7 3 6 5

Figure 3: Average substitution rate from 30 runs

with clusters of size 61, where far corresponds to

individuals replacing worst one in the population.

Figure 4: Cumulative average number of substitu-

tions obtained in 30 runs with clusters of size 61.

thermore, on the proposed model, the replacement strategy
not only controls what genes are allowed to spread through
the population of candidate solutions but also which mating
preferences will disseminate.

Figure 2 shows that the Mate Choice approach is able to
successfully contribute with offspring that are better than
the most structurally similar individuals in the population.
Also, it does so at a fairly higher average rate than the Stan-
dard approach since the early stages of the runs. A similar
behaviour is displayed in Fig. 3 regarding offspring that
while being structurally different from the individuals in the
population, are better than the worst one. These substi-
tution rates are much lower, than the ones of Fig. 2 since
the algorithms are more likely to produce offspring similar
to individuals in the population, an effect that seems more

pronounced in this particular instance. Still, differences be-
tween the two approaches are quite visible.

Although an increase in the acceptance rate doesn’t nec-
essarily translate into a better performance, it does show an
aptitude to adapt to the replacement strategy. While the
Standard approach is bound to give advantage to fittest in-
dividuals, the Mate Choice approach, despite selecting one
of the parents through a tournament operator, may adopt
different strategies to select the second one. Also, these
strategies vary and self-adapt on the individual level. Adap-
tion occurs as the replacement strategy discards unfit off-
spring, therefore giving an advantage not only to individuals
that are fit but also to those that are able to select mating
partners that contribute positively to the quality of their
offspring. By means of inheritance, good mating evaluation
functions are bound to spread through the population and
further contribute to an increase of the acceptance rate ob-
served in Figs. 2 and 3. Results in Table 1 suggest that such
an increase in the acceptance rate contributes to competitive
and sometimes better success rates.

A possible setback on the application of our mate choice
approach is the extra computational overhead created by
the evaluation of mating candidates. While this is not the
scope of the study, it is relevant to note that such an analysis
is not straightforward due to a number of reasons. Firstly,
mating candidates do not undergo local optimization while
being evaluated on smaller instances of the problem, which
is responsible for the largest part of the computational ef-
fort required for evaluating individuals. Secondly, the effort
needed to calculate the potential energy of a cluster varies
with its size. Thirdly, mechanisms may be easily included
in the algorithm to ensure that individuals are not repeat-
edly evaluated on the same instances of the problem, which
is particularly relevant on steady-state models where indi-
viduals may have a considerably long life. Fourthly, which
individuals are evaluated and on what instances is highly
dependent on the mating preferences present in the popula-
tion, which are subject to adaptation along the run. Finally,
as Fig. 4 shows, the Mate Choice approach produces an in-
crease of roughly 50% on the cumulative average number of
substitution, reaching the average number of substitutions
attained by the Standard approach still early in the evolu-
tion process. By reducing periods of stasis, our approach
may reach the putative optima on a smaller number of gen-
erations thus reducing the number of required evaluations.

Even though the Mate Choice approach results on a much
larger number of substitutions along the evolution process,
their impact is quite different from those on the Standard
approach. Figure 5 shows the average distance between in-
dividuals and how it is influenced by substitutions in each
approach. The measure is calculated through Eq. 3 and
evaluates the structural dissimilarity between individuals in
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Figure 5: Average distance between individuals ob-

tained from 30 runs with clusters of size 61.

Figure 6: Average fitness obtained from 30 runs

with clusters of size 61.

the population. Both approaches start with nearly the same
dissimilarity value, however, the Standard approach, while
producing a smaller number of offspring, is able to intro-
duce new individuals in the population that have a much
stronger impact on its average dissimilarity. These results
may appear contradictory with the ones reported in Fig. 3,
which shows that Mate Choice generates more replacements
by dissimilar individuals. This can be explained as follows:
the number of substitutions resulting from the introduction
of dissimilar individuals is low in both strategies and hence
unnoticeable in terms of average distance.

Our approach shares some characteristics with the Stan-
dard one, with a period where the average dissimilarity be-
tween individuals increases, followed by stagnation and a
period where it slowly downfalls. There are however in-
herent differences between the impact of new individuals.
While unable to reach an average dissimilarity as high as
the Standard approach, Mate Choice causes a slower yet
longer increase in the population’s dissimilarity, suggesting
that offspring cause a smaller but steadier impact on the
progress of the evolution process. Nonetheless, despite the
gradual decrease of dissimilarity toward the end of the run,
both approaches are able to keep diversity above initial lev-
els, promoting a good mixture of individuals along each run.

Based on the number of substitutions in Figs. 2 and 3 as
well as on the impact new individuals have on the popula-
tion as reported in Fig. 5, Mate Choice seems to produce

offspring that share a higher structural similarity with in-
dividuals in the population. Such an effect is most likely
the result of how mating preferences evolve along the run,
suggesting that they adapt in a way that favours reproduc-
tion between structurally similar individuals, thus producing
offspring that have less impact on the average dissimilarity
of the population while still being valuable to the evolution
process. However, as Fig. 3 shows, this does not prevent the
discovery of individuals that are structurally dissimilar and,
yet, reasonably fit – in the sense that they are at least bet-
ter than the worst individual of the population. Thus, even
when generating dissimilar individuals the Mate Choice ap-
proach behaves more robustly than the Standard approach,
eventually leading to a higher number of substitutions by
both similar and dissimilar individuals. This indicates that
individuals tend to chose “compatible” mating partners.

The promotion of structurally similar individuals shown
by Fig. 2 and the resulting impact on the average dissimi-
larity between individuals illustrated by Fig. 5 may indicate
that the higher rate of substitutions caused by the evolved
mating evaluation functions contributes to a slower search
for the optimal solution as Mate Choice generates individ-
uals that cause a smaller impact and possibly smaller gains
in performance. However, Fig. 6 seems to contradict this
assumption, showing that Mate Choice actively contributes
to performance gains, a behaviour that is repeatedly found
on the other instances of the problem.

5. CONCLUSIONS
This study proposes a Mate Choice approach to the opti-

mization of Morse clusters. Major breakthroughs on CGO
are reviewed and a hybrid steady-state EA coupled with a
local-search method is thoroughly described. Mate Choice
is introduced and state of the art approaches applied to a
variety of problems are presented. A Mate Choice model for
Morse clusters optimization is described and coupled with
the aforementioned EA.

Morse clusters ranging from 41 to 80 atoms are tackled,
the results compared and discussed with a particular in-
terest on diversity handling as well as on the replacement
strategy’s acceptance rate. The results show a significant
increase on the success rate on 4 instances of the problem
and a slightly more robust behaviour on the global level. It
is discussed that the evolved mating functions are difficult to
analyze and seem to evolve in unforeseeable yet useful ways.
The acceptance rate is analyzed and it is suggested that the
Mate Choice approach is able to produce valuable individu-
als at an higher rate than the Standard approach, showing
an adaption to the replacement strategy. Also, the analysis
of diversity handling suggests that the Mate Choice model
promotes mating between structurally similar individuals,
therefore producing offspring that have a smaller yet longer
impact on the population’s diversity, and that individuals
appear to choose compatible mating partners. It is also
shown that the model is able to contribute to performance
gains in the population. Finally, difficulties in studying the
overhead caused by Mate Choice are discussed.

Future work may include applying Mate Choice to a set of
Morse clusters ranging up to 160 atoms as well as studying
how different mating preferences, representations, and vary-
ing mutation and crossover probabilities affect the behaviour
and performance of Mate Choice on hybrid steady-state ap-
proaches to CGO.
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