
Paradigmatic Analysis using Genetic Programming

Carlos Grilo1, 4; Fernando Machado2, 4; Amilcar Cardoso3, 4

1 Departamento de Engenharia Informática da Escola Superior de Tecnologia e Gestão de Leiria;
Morro do Lena, Alto Vieiro, 2401-951 – Leiria, Portugal

2 Instituto Superior de Engenharia de Coimbra; Quinta da Nora 3031 – 601 Coimbra, Portugal
3 Departamento de Engenharia Informática da Universidade de Coimbra;

4 Centro de Informática e Sistemas da Universidade de Coimbra;
Polo II, Pinhal de Marrocos, 3030 – Coimbra, Portugal

grilo@dei.uc.pt; machado@dei.uc.pt; amilcar@dei.uc.pt

Abstract

Paradigmatic analysis consists in the segmentation of a musical piece through the identification of relations between
different parts of the piece, and the classification of the identified segments into categories. In this paper we describe
how a genetic programming system can be used to make the paradigmatic analysis of monophonic musical pieces,
using a simple fitness function inspired in the Kolmogorov complexity estimation. We make use of automatically
defined functions in order to represent segments. Relations are made explicit through the reuse of segments and the
application of transformations to these segments.

1 Introduction

The segmentation of musical pieces and the clustering
of different segments into meaningful categories are two
key elements for the understanding of music. People do
both these things through the identification of
similarities and contrasts between the different parts of
the musical piece they are listening, although they may
do it non-consciously. Also, even if they consciously
identify related segments, the criteria used to identify,
compare and associate these segments may not be
explicitly formulated. If ‘explicitation’ is not crucial to
ordinary listeners, that is not the case in musical
analysis, in which it is important that these criteria are
objectively and explicitly defined in such a way that
other analysts can better understand and criticize
analyses already done.

Paradigmatic analysis (PA) is a formal approach to
musical analysis, which intends to free the analysis
process from subjective criteria. It comprises the
segmentation of a musical piece through the
identification of relations between different parts of the
piece, and the classification of segments into categories
according to the existing relations. This paper describes
an ongoing research work in which we study how a
genetic programming system can be used to identify the
different segments of a monophonic musical piece and
the relations among them. The relative quality of each
segmentation is measured using a simple fitness
function, inspired in the Kolmogorov complexity
estimation, which guides the search through the space of
possible segmentations. This work is part of a larger
project named SICOM (Pereira et al. 1997), in which
case-based reasoning is applied to musical composition.
In SICOM each case is an analysis of a previously
composed music that can be used, in conjunction with

others, to create new musical pieces. This part of the
project consists in the construction of one system able to
fill this case base.

We start, in section 2, by describing PA and some
previous work done in this area. A brief overview of GP
is done in section 3. Our approach is then described in
section 4 and some first results are presented in section
5. Finally, in section 6, we draw some overall
conclusions and indicate the future steps in our research.

2 Paradigmatic Analysis

PA (Nattiez, 1975) is based on an analysis procedure
proposed by Ruwet (Ruwet, 1972) in an attempt to
systematize the musical analysis process. This
procedure, which relies mainly on the notion of
repetition, divides a musical piece into a set of
segments, and classifies them into categories according
to their similarity. One central idea of this type of
analysis is that these tasks are done without considering
the composer’s intentions, nor the perceptions or
interpretations of the listener/analyst, so that some
scientific objectivity can be achieved.

The procedure consists in two main operations.
The first one identifies segments that are exact
repetitions of previous segments. This operation derives
structures like, for instance, A + X + B + A + B, in
which segments that are repeated through the piece are
represented with the first letters of the alphabet, and
segments that are not repeated are represented with the
last ones. The second operation consists in the
identification of relations other than repetition between
the different segments. Two segments are related if one
can be described as being a transformation of the other.
This operation may modify the previously obtained
structure in order to reflect these relations. The structure

A + X + B + A + B may be modified, for example, to
A + A1 + B + A + B, or even to A + A1 + A2 + A + A2,
where A1 and A2 are transformations of the A segment.
These operations comprise an association of the
identified segments into categories. If the structure
derived is A + A1 + B + A + B + X, then segments A
and A1 form one class, and segment B will form
another one. Segment X is not associated to any class
because no relation has been found between it and the
other segments. Segments that don’t fall in any class are
called rests. After the segmentation of the whole music,
the same procedure may then be applied to the resulting
segments in order to identify smaller segments, and so
on, until no further segmentation can be done. The final
result can thus be represented as a tree in which longer
segments are closer to the root.

This procedure assumes the existence of some kind
of mechanism with the capacity to identify repeated
segments through the piece. Moreover, it states that,
before the analysis is started, all the transformations that
can be used to describe relations between segments
must be defined, as well as the mechanisms that allow
the identification of these transformations.

Although one of the main initial goals of PA was
to free the analysis process from subjective criteria, it
has been criticized because, in practice, both
segmentation and consequent classification usually rely
on the analysts’ intuition (Cook, 1987). Another
problem, reported in (Anagnostopoulou and
Westerman, 1997), rises due to the existing bias towards
considering the first segments appearing in the music as
the paradigms, i.e. the most representative segments
against which other segments are compared in order to
form classes of segments. Sometimes these first
segments are not so representative, which leads to
difficulties both in the segmentation and classification.
In (Anagnostopoulou and Westerman, 1997), the
classification and the paradigm problems are addressed
by using a self-organizing neural network, which groups
already identified segments into clusters (categories)
according to some features explicitly chosen by the
analyst. The segmentation task is addressed in
(Smaill et al. 1993), using a simple algorithm, based on
the Ruwet’s procedure, that strongly resembles our
description above: first, the piece is scanned for exact
repetitions and then, other relations are identified. In
(Cambouropoulos, 1998) a model is proposed for
segmentation based both on the identification of local
discontinuities like big intervals, pauses, or longer notes
(Cambouropoulos, 1996), and on the identification of
similarities between different parts of one piece.
Similarities between segments are identified using a
brute-force pattern-matching algorithm, the Sequential
Pattern-Matching Algorithm (Cambouropoulos, 1995),
which identifies all possible matches existing in a
musical piece. Then, the boundaries of all the identified
segments and the identified local discontinuities are
combined in order to establish if one particular point of
the piece is, or not, a segment boundary.

3 Genetic Programming

Genetic programming (GP) is an evolutionary
computation technique for the automatic generation of
computer programs (Koza, 1992). The GP process may
be concisely described as follows:

1. Randomly generate an initial population of
individuals (i.e. programs);

2. Evaluate the current population using a fitness
function that measures the quality of each
individual;

3. Stochastically select the best individuals;

4. Apply genetic operators (e.g. recombination,
mutation) to the selected individuals, thus
generating a new population;

5. Substitute the old population by the new one, and
then repeat the same process from step 2. The
evolutionary process is stopped when a
pre-specified halting condition is met.

From the description above, one can see that GP is
quite similar to other evolutionary computation
approaches. In fact, the same description could be used
to describe a Genetic Algorithm. The main
distinguishing features of GP are related with the
representation of the individuals and with the fact that
these individuals are computer programs. In GP the
individuals are, typically, represented as trees. The
internal nodes of the trees are functions belonging to a
function set, and leafs are terminals belonging to a
terminal set. The choice of appropriate function and
terminal sets is, probably, one of the most important
tasks in the development of a GP system, since it
establishes the basic building blocks that will be
available for the generation of a solution. As in GP the
individuals are computer programs, one must execute
them, in order to assign fitness. Fitness assignment is
one of the key issues in GP, as in any evolutionary
computation technique, since the evolutionary process is
guided by it.

In order to generate a new population one applies
genetic operators to the selected individuals. Usually,
three types of operators are involved: reproduction,
recombination and mutation. The reproduction operator
merely makes a copy of a selected individual to the next
population. The idea of the recombination operator is to
generate new children through the exchange of genetic
material of two parents. In GP the most popular
recombination operator is the crossover operator
introduced by (Koza 1992), which can be described as
follows: randomly select two sub-trees (one from each
parent), exchange the sub-trees. The idea of mutation is
to randomly introduce new genetic material. In GP this
is usually achieved by replacing a sub-tree by a
randomly generated one. It is important to notice the
roles of these operators: reproduction is merely a way of
ensuring that some of the individuals are preserved; the

idea behind recombination is the exploitation of genetic
characteristics that are already present in the population;
finally, the role of mutation is to explore new regions of
the search space.

As the number of generations increases the
average fitness of the individuals tends to improve.
Eventually, provided that enough time is given, the
optimal solution will be found. One of the problems is
that, in certain cases, there is no way to know when an
optimal solution was found. Therefore, the algorithm is
usually stopped when a pre-defined number of
generations or fitness value is reached.

In (Koza, 1994) one important feature of GP was
introduced, that allows a better exploitation of space
regularities: the Automatically Defined Functions
(ADFs). When ADFs are used, each program consists
on a main function and a set of subroutines, the ADFs,
which are simultaneously evolved. This feature is
important to us, since through the use of ADFs we may
reuse musical stuff in order to describe relations
between segments located in different parts of the
music.

4 Paradigmatic Analysis using
Genetic Programming

In this section we explain our approach to PA, more
specifically, to the segmentation and identification of
relations between segments in monophonic musical
pieces. GP is the mechanism used to do both these tasks.
The goal is to find a program that generates a given
musical piece and, which at the same time, is a
description of that piece, i.e. shows what segments exist
in the piece and which ones are related and how. One
peculiarity of our approach, not very common between
other works using GP, is that although the program
result must be similar to the given music, we are not
interested in that result by itself. What is really
important here is the ordering and content of the various
segments, and the functions applied to each of them, i.e.
the relations among them.

Hence, each program in the population generates,
as output, a string of notes. Moreover, program trees
represent segmentations of the generated strings.
Programs are composed of a main function tree
describing relations between segments, and a set of
ADFs that represent specific segments. The main
function tree is built using a set of primitive functions
that, beyond putting the different segments together,
also describe melodic, rhythmic or other
transformations that portray relations between segments.
One of the most important functions used is conc, which
receives, as arguments, two segments and gives, as a
result, their concatenation. Besides putting segments
together, it allows repetition to be clearly shown when
one segment is used more than once. Examples of other
functions are up/down transposition and reverse.

The leaves of the main function tree are ADFs
without arguments. Each ADF consists only of one
terminal symbol, a segment, represented as a pair [l, r],
where l and r are, respectively, the left and right limits
of the segment. When an ADF is called, it returns the
string of notes from the original piece corresponding to
the interval specified by [l, r]. This string will then be
used in the main function tree so that it can be
concatenated with other strings in a bottom-up fashion
until the all piece is complete. Figure 1 shows a simple
string of notes and one individual representing a
segmentation of it.

conc

ADF1 = [0 3] <=> ABCD
ADF2 = [8 11] <=> AACD

ABCDDCBAAACDBBDE

conc conc

transpUpreverse

ADF1 ADF2ADF2ADF1

Figure 1: Example of one individual representing a

segmentation of a simple music.

There are three main reasons why ADFs are used.
First, ADFs allow a better exploitation of space
regularities, as was referred in the previous section: in
our case, we are interested that the most frequently
occurring patterns are identified and kept so that the
same individual can easily reuse them. Second, ADFs
provide an elegant way of showing that two different
parts of the piece are related. The third reason is that, if
ADFs were not used, extra processing would be needed
in order to detect if one particular segment was repeated
throughout the piece since, it would have to be
compared with all the other segments. This last aspect is
important in the calculation of the fitness function.

The quality of each program is measured taking
into account (i) the difference between the program
output and the target piece, and (ii) the number of notes
from the target piece really used to produce that output.
Fitness is inversely related with these values. Hence, the
goal is to minimize the value of the fitness function,
which is described by the following weighted sum of
two terms

∑
=

×+×=
n

i
iADFlbtmdaxF

1

)(),()(

where x is the individual to be evaluated, a and b are
constants, d(m, t) is the difference between the program
output m and the target music t, n is the number of
ADFs of each individual (all individuals have the same
number of ADFs) and







 +−

=
functionmaintheinusednotisif0

functionmaintheinusedisif1

)(

i

iii

i

ADF

ADFlr

ADFl

represents the length of each segment, from de target
piece, used in the main function tree.

The difference d(m, t), between the program output
and the target music is calculated with the
Wagner-Ficher algorithm (Stephen, 1992), which
measures the distance between two strings by the
number of operations of insertion, deletion and
substitution needed to transform one in the other. In the
current version of the system, melodies are represented
as strings of notes, each one described by its pitch and
duration with the structure {{Name of the note,
Accident, Octave}, list of basic rhythmic figures},
(Smaill et al. 1993). The comparison between notes
needs not to cover all the dimensions by which they are
described. For instance, if only a rhythmic analysis is
intended, then only notes duration must be considered.
Also, other representations for melodies can be used as
well: it can be used, for example, intervals between
notes or contour (up, down, equal), depending on the
goals of the analyst.

The second term sums the length of the segments
used in the main function. Its important to note that
even if one ADF is used more than once in the main
function, the length of the segment it stands for is only
summed once. This allows that those individuals that
are able to produce the target music using fewer notes
are considered the best ones.

Our idea can be viewed as a kind of Kolmogorov
complexity estimation, in which the goal is to find the
smallest program that produces a given string
(Conte et al. 1997). Here, we are not really looking for
the smallest program. Instead, we want to find the
program that produces the target music, or a very close
one, maximizing the reuse of musical material. For
example, consider the very simple string of notes
CCCCGGGGCCCC, and the two individuals with the
same ADFs, in Figure 2, describing it.

conc

ADF1

ADF3conc

ADF2

conc

ADF1

ADF1conc

ADF2

ADF1 = [0 3]
ADF2 = [4 7]

 ADF3 = [8 11]

ADF1 = [0 3]
ADF2 = [4 7]

 ADF3 = [8 11]

Figure 2: Two different individuals with the same ADFs
describing the same music

The individual on the right side is, according to the
fitness function, better than the one on the left because it

uses fewer notes from the target music or, saying it
another way, it does a better reuse of the existing
segments.

This fitness function does not use musical
knowledge to measure the quality of each individual.
We do not claim that this function is sufficient, by itself,
to lead the system to the best segmentations, or that the
use of other methods cannot enhance the quality of
some segmentations. On the contrary, in some situations
it may happen that an individual with a fitness value
slightly worst than other one can represent a better
segmentation from the point of view of a human analyst.
Another problem that may happen, as we will see in the
next section, is that sometimes the boundaries of the
identified segments may not correspond exactly to the
boundaries of the segments that a human analyst would
identify. In these situations, it is evident that methods
based on the detection of local discontinuities like the
one in (Cambouropoulos, 1996) could be of great help.
However, our experimental findings indicate that this
fitness function is able to lead to very acceptable
segmentations. These segmentations, when not perfect,
can be viewed as first versions, which can be refined
latter by other methods. Alternatively, we could
incorporate in the fitness function one term that would
measure the quality of segment boundaries: those
corresponding to bigger discontinuities would
contribute to a better fitness value.

5 Experimentation

In this section we show the results obtained after some
experiments made with the troubadour songs «Be
m’anperdout…» (Figure 3) and «Maria muoter reinû
maît» (Figure 4), used by Ruwet (Ruwet, 1972) to
exemplify the PA procedure.

Figure 3: «Be m’anperdout»

Figure 4: «Maria muoter reinû maît»

We made 30 runs for both pieces and in each run
we used populations of 3000 individuals evolving
during 100 generations. Standard reproduction,
crossover and mutation operators were used with rates,
respectively, of 10%, 60% and 30%. Each individual
was composed by 6 ADFs and only the conc function
was used in the main function since only relations of
repetition or “almost repetitions” exists in these pieces.
The termination criterion is the number of generations
since it is impossible to know, in advance, what is the
fitness value corresponding to the best analysis.

After some preliminary experiments, the values of
the fitness function weights were established as follows:
5 to the first term and 1 to the second. This is a sensible
choice since if the proportion between the first and
second terms is too large, the system tends not to reuse
segments; if it is too small it tends not to approximate
program results to the original music. We also define a
limit to the error e, equal to 5% of the number of notes
of the given music, so that individuals with an error
greater than this limit cannot be considered as
acceptable segmentations.

In 28 of the 30 runs made with the piece «Be
m’anperdout» we obtained individuals with the same
structure of the one in Figure 5, producing a string of
notes equal or almost equal to the target piece (1 to 3
notes of error), using only 99 or 100 notes of 142. All
these individuals have the same structure of the
segmentation made by Ruwet: A + A + X. The
difference is that, although he considers the last segment
as a rest X, he subsequently subdivides it into three
other ones. The two last ones, together, correspond, with
some differences, to segment A without the first 5 notes.
The error between the music produced by some of these
individuals and the target music is due to some
misplaced segments boundaries. In these cases, as we
have already mentioned, it would be helpful to use local
search methods so that these situations could be
corrected or avoided. The difference between the output

of the other 2 individuals and the given music is greater
than e (7 notes to this piece), and so, they are not
considered.

conc ADF1 = [85 140]
ADF2 = [0 20]
ADF3 = [0 41]
ADF4 = [85 140]
ADF5 = [0 21]
ADF6 = [84 141]

ADF6ADF3

conc

ADF3

Figure 5: Example of a segmentation of
«Be m’anperdout»

Figure 6 shows two analyses made by the system
to the piece «Maria muoter reinû maît». In 16 of the
runs we obtained individuals equivalent to the first one,
which are the best ones, corresponding to the first level
segmentation made by Ruwet, with a fitness value of
69. In other 11 runs we obtained individuals like the
second one with fitness of 88. These individuals are not
so good as the first ones because the segmentation is
less detailed. Allowing a higher number of generations
could, possibly, solve this problem. The other 3
individuals have the same structure of the first
individual in Figure 6 but the difference between the
output and the given music is greater than e (5 notes to
this piece).

conc ADF1 = [17 52]
ADF2 = [21 70]
ADF3 = [36 70]
ADF4 = [36 70]
ADF5 = [90 108]
ADF6 = [36 70]

ADF5

conc

ADF5ADF4

conc

ADF4

conc ADF1 = [36 70]
ADF2 = [64 86]
ADF3 = [71 108]
ADF4 = [73 108]
ADF5 = [36 70]
ADF6 = [36 70]

ADF3ADF5

conc

ADF5

Figure 6: Examples of two segmentations of
«Maria muoter reinû maît»

It can be seen in the first individual of Figure 6
that neither ADF4 nor ADF5 corresponds to the first
occurrence of the segment in the original piece.
Although this may be strange at a first glance, it is
actually an advantage, since it is a way of solving the
paradigm problem (see section 2), as the system tends
to choose the more representative segments in order to
minimize the error. Another important question
concerning this example is that, although it is a good
segmentation, the music produced by this individual is
different from the original music in 3 notes. In this case,
this is due to the fact that, in the original music, the first
occurrence of the A segment (here represented by
ADF4) is not exactly equal to its second occurrence.
Ideally, the individuals should describe one of the
segments as a transformation from the other one.

However, to attain this, we would have to include a
special function in the function set which we could only
describe by “insert a note in position ten and then divide
the rhythm of note eleven and twelve by two”. Instead
of dealing with a complex function set with very
specific functions like this one, which would drastically
reduce the performance of the system, it is preferable to
allow some error on the output, given that it is not
greater than the error limit e; if the error happens to be
systematically too large, no good analysis is possible
and the function set must be revised.

The pieces here discussed, like many others, have
a hierarchical structure. This means that they are
composed of bigger related segments that are also
decomposable in smaller segments. The results of the
experiments that we have already done lead us to
conclude that the system has a strong tendency to first
identify the longest segments existing in one piece, i.e.,
to do the higher-level segmentation. The question of
how to continue a first segmentation, in order to identify
smaller segments, still is an open problem in our work.
One obvious possibility consists in the application of the
same process of segmentation to the segments already
identified. However, this approach can, in some
situations, be fruitless because the existing segments
may not be composed of related sub-segments. As an
example, suppose that one piece has the structure
A + B + A and that A = a + b and B = c + b. If we try to
analyse the two segments independently we will be
unable to identify segments a, b and c, because a is not
related to b, which is not related to c. A human analyst
would have no problems with this approach because
he/she can always take a look to other segments while
working on a specific segment, in order to identify
common sub-segments. Based on this idea, we sketched
an approach that consists in the application of the
segmentation process again to the entire piece, but now
imposing the following restrictions: only segments that
fall within the previously identified segments can be
generated; individuals that use more notes than the ones
used in the previous segmentation (with a higher second
term in the fitness function), or that use a equal or fewer
number of segments, are strongly penalized. We applied
this approach to the piece «Be m’anperdout…» using,
as previously identified segments, the ones
corresponding to ADF3 ([0, 41]) and ADF6 ([84, 141])
in Figure 5. Also, individuals with less than 4 segments
and using more than 100 notes from the original music
were strongly penalized. In Figure 7 we show two of the
best individuals that resulted from these experiments.
The first one has an error of 4 notes and uses 66 notes
from the original music, which corresponds to a fitness
value of 86. The second one has no error and uses 78
notes from the original music, thus having a fitness
value of 78. Although both individuals are similar to the
segmentation done by Ruwet, the first one is closer to it.
This is one of the cases where the best individual, from
the point of view of a human analyst, has a worst fitness
value. In this case, this happens due to the errors

between the music produced by the first individual and
the original one. One way of solving this problem is,
once more, to include in the function set a function that
better reflects the transformation between the two
segments (those corresponding to the first and last
occurrences of ADF2 of the first individual of Figure 7),
so that less or no errors exist. Another approach is to
ignore the error between the two pieces when this error
is smaller than the limit e.

conc

ADF1 = [8 41] ADF3 = [86 106] ADF5 = [0 7]
ADF2 = [8 41] ADF4 = [84 107] ADF6 = [84 108]

conc

ADF5 ADF2

conc conc

conc

ADF5 ADF2 ADF4 ADF2

conc

ADF1 = [120 141] ADF3 = [85 135] ADF5 = [0 12]
ADF2 = [0 19] ADF4 = [84 119] ADF6 = [84 87]

conc

ADF2 ADF1

conc conc

conc

ADF4 ADF1ADF2 ADF1

Figure 7: Two further segmentations of «Be

m’anperdout…»

Although these experiments resulted in a few
interesting individuals, all with the same structure of the
ones in Figure 7 (a + b + a + b + c + b), we think that
this approach for further segmentations is still suffering
from some deficiencies, namely, the fact that it does not
consider the structure outlined in the first segmentation
(in this case, A + A + X) as already established. This
means that the system spends part of the time
rediscovering the previously outlined structure.
Sketching a suitable procedure for further segmentations
will be one of our main tasks in the near future. In the
next section we present some ideas that, we hope, will
enhance de performance of the system.

6 Conclusions and Future Work

In this paper we have presented an approach to PA,
using GP. The way programs are represented, combined
with the fitness function, which is better for individuals
that produce pieces closer to the original one and that
make a better reuse of musical stuff, allows the system
to choose the most representative segments. The first
results obtained indicate that GP using ADFs may be
well suited to the task, due to its capacity to explore the
search space regularities. The power that GP has already
demonstrated in other very complex areas also leads us

to believe that these results can be substantially
improved.

Our future work will comprise several tasks whose
main purpose is to enhance the performance of the
existent system. These include: outline of a better
procedure so that first segmentations can be further
detailed; testing of complementary segmentation
methods, like the ones based on local discontinuities, so
that segmentations and respective evaluation can be
more accurate; use multi-population evolution with
exchange of genetic material between populations;
co-evolution of a GP algorithm which evolves simple
tree programs that are executed against several strings
of segments evolved by a Genetic Algorithm. Finally,
we want to extend the system so that non-monophonic
pieces can be analysed, which would also imply a
change in SICOM’s capabilities.

Acknowledgments

This work was partially supported by POSI - Programa
Operacional Sociedade de Informação of Portuguese
Fundação para a Ciência e Tecnologia and European
Union FEDER, and by Escola Superior de Tecnologia e
Gestão de Leiria.

References

C. Anagnostopoulou, G. Westermann. Classification in
Music: A Computational Model for Paradigmatic
Analysis. In Proceedings of the International
Computer Music Conference: 125-128, Thessalonik,
Greece, 1997.

E. Cambouropoulos, A. Smaill. A Computational Model

for the Discovery of Parallel Melodic Passages.
Proceedimgs of the XI Coloquio di Informatica
Musicale, Bologna, Italy, 1995.

E. Cambouropoulos. A Formal Theory for the

Discovery of Local Boundaries in a Melodic
Surface. Proceedings of the III Journées d’
Informatique Musicale, Caen, France, 1996.

E. Cambouropoulos. Musical Parallelism and Melodic

Segmentation. In Proceedings of the XII Colloquium
of Musical Informatics, Gorizia, Italy, 1998.

M. Conte, G. Trautteur, I. de Falco, A. Della Cioppa, E.

Tarantino. Genetic Programming Estimates of
Kolmogorov Complexity. In Proceedings of the
Seventh International Conference on Genetic
Algorithms: 743-750, Morgan Kaufmann, 1997.

N. Cook. A Guide to Musical Analysis. Oxford

University Press, 1987.

J. R. Koza. Genetic Programming. Cambridge, MA:
The MIT Press, 1992.

J. R. Koza. Genetic Programming II. Cambridge, MA:

The MIT Press, 1994.

J. J. Nattiez. Fondements d’une Semiologie de la

Musique. Union Generale d’Editions, 1975.

F. C. Pereira, C. Grilo, Luis Macedo, and Amílcar

Cardoso. Composing Music with Case Based
Reasoning. Second Conference on Computational
Models of Creative Cognition. Dublin, Ireland,
1997.

N. Ruwet. Langage, musique, poésie. Editions du Seuil,

Paris, 1972.

A. Smaill, G. A. Wiggins, and M. Harris. Hierarchical

Music Representation to Composition and Analysis.
Computer and the Humanities, 27: 7-27, 1993.

G. G. Stephen. String Search. Technical Report, School

of Electronic Engineering Science, University
College of North Wales, 1992.

