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Abstract: ‘Evolving assemblages’ explores the transformation of images or 
three-dimensional (3D) models in order to create large-scale assemblages of 3D 
objects. The proposed approach allows the evolution of the type, size, rotation 
and position of each object, constructing a non-photorealistic transformation of 
a source image or 3D model. The creator evaluates each individual of the 
population accordingly to his/hers aesthetics preferences, influencing the final 
outcome of the process. The evolution of assemblages which are mapped to a 
3D model is described. The experimental results presented highlight the 
generalisation abilities of the evolved individuals and the expressiveness of the 
evolutionary tool. 
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1 Introduction 

The research project ‘evolving assemblages’ (http://evolving-assemblages.dei.uc.pt/) 
started as a study on the development of ornamentation techniques. This initial goal led 
us to the creation of an interactive evolutionary art tool for the creation of large-scale 
assemblages of three-dimensional (3D) digital objects. These are characterised by the 
textures – created through the meshing of objects, by size, and rotation changes. Here, we 
introduce a new type of assemblage, 3D model assemblages, in which the objects are 
mapped onto the surface of a 3D model. 

The main artistic sources of inspiration for this work are: pointillism, mixed media 
assemblage of objects, and ornamentation techniques (e.g., similar to the ones found in 
Gustav Klimt works). From a scientific point of view, areas such as evolutionary  
non-photorealistic rendering and artistic filter evolution are of particular relevance. The 
evolved individuals take as input a 3D mesh, and produce as output the type, scale, 
rotation and placement of the objects, which will be placed on the surface of the mesh. In 
this way, the result is an assemblage of 3D objects, which constitutes a non-photorealistic 
portrayal of the source model. Finally, the 3D assemblage is rendered using a raytracer. 

The evolutionary process leading to the creation of assemblages of 3D digital objects 
can be succinctly described as follows: 

1 the programme receives as input a 3D model 

2 the user creates and selects a library of 3D objects to generate the assemblage 

3 through a user-guided evolutionary process, the user evolves the type, rotation, size 
and placement of the objects: 
a an initial random population of object assemblages is created 
b the user indicates those that better match his/hers ideas 
c the next population is created through the recombination and mutation of the 

genetic code of the selected assemblages 
d the process is repeated from Step (b) until an assemblage that satisfies the 

preferences of the user is found. 

4 a raytracer render the 3D scene. 

The proposed approach can be seen as an instance of computer-aided creativity (Machado 
et al., 2007), in the sense that the tool takes care of several aspects related with the 
technical execution of the piece, allowing the user to focus on the creative aspects of the 
task. It allows the creation of novel artworks that would be (nearly) impossible to 
produce by conventional means. In addition, it provides mechanisms that allow the 
exploration of a search space of potential pieces, guided by the artistic and aesthetics 
preferences of the user. Due to the stochastic nature of the process, serendipity plays an 
important role, sometimes leading the artist to explore unforeseen paths and diverting the 
artist from his/hers original ideas. On the other hand, user guided-breeding promotes the 
recombination of the individuals that are closer to the aesthetics preferences of the user, 
leading to the successive refinement of the populations. As such, ‘evolving assemblages’ 
has an impact on the creative process, the artist is no longer responsible for the idea: the 
idea rises via the interaction between the artist and tool. Nevertheless, it is important to 
ensure that she/he can still convey her/his aesthetic preferences and views by the use of 
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the tool. The artists should be able to significantly influence the final outcome of the 
process, express themselves through the use of this tool, and recognise their signature in 
the evolved works, thus connecting with them at an emotional and artistic level. 

The paper is structured as follows. In Section 2, we make a brief survey of related 
work. In Section 3, we present an overview of the different modules of the system. Next, 
in Section 4, we describe the evolutionary engine, giving particular emphasis to the 
representation, genetic operators, and genotype-phenotype mapping, and we describe the 
production of 3D model assemblages. In Section 5, we present and discuss some of the 
experimental results attained in the course of our research. Finally, we draw some 
conclusions and discuss aspects to be addressed in future work. 

2 Related work 

Through time, evolution has created a wide variety of species adapted to their 
environment. Some of these species – e.g., humans – exhibit intelligent and creative 
behaviour. According to Darwin (1859), evolution is based on two fundamental 
principles: selection, and reproduction with variation. Selection ensures that fitter 
individuals are more likely to reproduce. The descendants of these individuals inherit 
characteristics from the progenitors – which implies that they tend to be fit – but they are 
not exact copies, which allows evolution. The reinterpretation of Darwin’s ideas in light 
of Mendels genetics, i.e., Neo-Darwinism, explains how the characteristics are inherited 
and how and why changes occur. Natural selection occurs at the phenotypic level, while 
reproduction acts on the genotype (Dennett, 1995). The characteristics of the individuals 
are not directly inherited. Instead, the genes that codify these characteristics and those 
that enabled their development are inherited. Variation results from copying errors – i.e., 
mutations – and from the recombination of the genetic material of the progenitors. 

From Holland’s (1975) work onwards, natural evolution has also become the basis for 
several artificial intelligence approaches, usually referred to as evolutionary computation 
(EC) whose goal can be synthesised as follows: 

“How do we turn Darwin’s ideas into algorithms?” [Holland, (2000), p.377]. 

The idea of using EC for artistic purposes can be traced back to Richard Dawkins. In his 
book The Blind Watchmaker, Dawkins (1987) delineates a programme which allows the 
evolution of the morphology of ‘virtual creatures’ or biomorphs. More precisely, each 
biomorph is a drawing, the appearance of which depends on the values of a set of 
parameters encoded in a string, the genotype. The biomorphs of the current population 
are displayed on the screen, and the user indicates his/her favourite ones. In other words, 
the user guides the genetic algorithm (GA), which circumvents the need to develop a 
computational fitness function. 

This seminal work, along with the influential works of Sims (1991), and Todd and 
Latham (1992), led to the emergence of a new research area, evolutionary art, which is 
characterised by the use of nature-inspired computing for artistic purposes. A thorough 
survey on the application of biological-inspired techniques to visual art can be found in 
Lewis (2007). 

The use of evolutionary algorithms to create image filters and non-photorealistic 
renderings of source images has been explored by several researchers. Focusing  
on the works where there was an artistic goal, we can mention the research of: Ross  
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et al. (2006) and Neufeld et al. (2007), where genetic programming (GP) (Koza, 1992), 
multi-objective optimisation techniques, and an empirical model of aesthetics are used to 
automatically evolve image filters; Lewis (2004), which evolved live-video processing 
filters through interactive evolution; Machado et al. (2002), where GP is used to evolve 
image colouring filters from a set of examples; Yip (2004), which employs GAs to 
evolve filters that produce images that match certain features of a target image; 
Collomosse and Hall (2005) and Collomosse (2006, 2007), which use image salience 
metrics to determine the level of detail for portions of the image, and GAs to search for 
painterly renderings that match the desired salience maps; Hewgill and Ross (2003) use 
GP to evolve procedural textures for 3D objects. 

For the distribution of objects onto a surface, several researchers have already 
covered the problem: Hausner (2001) places squared-tiles in a planar surface using 
direction fields and Voronoi diagram to orient and distribute the tiles; Kim and Pellacini 
(2002) extend the previous method using a collection of tiles of arbitrarily-shape to fill an 
input container image. In addition to this area, a significant research effort is in progress 
on the context of 3D models. Fleischer et al. (1995) create patterns based on biologically 
inspired phenomena (e.g., physical processes of collision and adhesion). Each element is 
designated as a cell, which interacts to form cellular textures, this interaction arises 
whether automatically or the user specifies the cell’s behaviour.. The texture patterns 
arise from the interactions of discrete elements. Prusinkiewicz et al. (1994) extend the 
Lindenmayer systems in a manner suitable for simulating the interactions between a 
developing plant and its environment. Zhou et al. (2006) propose an algorithm for 3D 
texture synthesis, the main idea is to repeat and stitch patterns of geometry to cover the 
surface of the input model. However, it is necessary a post processing step to buttress the 
integrity of the geometry. The work of Ma et al. (2011) uses also repetitive elements to 
synthesise element textures. Each element is represented by multiple samples. They 
encode the attributes position, size, shape, and orientation in each sample. Then, they 
place the samples using a neighbourhood metric. The overall distribution of the samples 
is minimised using an energy function through an iterative optimisation solver. Lai et al. 
(2006) cover a 3D mesh with rectangular tiles based on the characteristics of the surface, 
using also a global optimisation approach to evenly distribute the objects. A fascinating 
line of research by Gal et al. (2007) involves the composition of 3D shapes in order to fill 
the volume of an input object. The algorithm fits the elements, from a database, into the 
target shape. The fitting algorithm considers the partial shape similarity between the 
target and the element which is more likely to be the proper match. The algorithm 
searches in the database elements in such way that some portion of the element locally 
approximates the region around a given point. The fitting scheme evaluates the quality of 
each match based on a score function. In addition, the elements must also satisfy the 
following constraints: visibility, overlap limit, and proportions. Finally, Szeliski et al. 
(1991) use particle systems and its interactions to shape the surfaces. The system is well 
generalised for a wide variety of situations: it adapts to the transformations of the surface 
(for instance, it is possible to create particles to fill the gaps when the surface is 
stretched), and it allows the creation a 3D surface from a collection points. Several other 
works exist, however a thorough survey is beyond the scope of this article. 
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3 Overview of the system 

Figure 1 presents the architecture of the system, which is composed of two main 
components: an evolutionary module and a previewing and rendering module. The 
evolutionary module is an expression-based GP (Sims, 1991) interactive breeding tool, 
which is responsible for the evolution of a population of assemblages. 

Figure 1 The architecture of the system 

 

The user selects two parents, which generates offspring through crossover and mutation. 
Crossover recombines the genetic code of the parents, being, therefore, responsible for 
the exploitation of the characteristics that are already present in the current population. 
The mutation operator induces small changes in the genetic code, promoting exploration. 
The users preserve and select variations of the individuals, evolving images that match 
their preferences. Although randomness plays an important role, as evolution progresses 
the choices of the user are continuously steering the algorithm to a particular style of 
imagery, making the images increasingly refined and unique. The evolutionary module 
comprises a function visualiser (see Figure 2) that depicts a greyscale visualisation of the 
individuals’ expression trees. As is usually the case in expression-based GP, the greyscale 
value of a pixel at the (x, y) coordinates is determined by the output value of the 
individuals’ expression trees for (x, y). Each individual is an assemblage of 3D objects. 
Therefore, usually, this visualisation mode does not provide enough information to allow 
educated choices by the user. 

To see the generated assemblages the user can use a previewer. The previewer runs 
on the master computer, it evaluates the genotypes and places the objects accordingly. 
Due to the complexity of the assemblages, we have available a 3D renderer that uses a 
Condor-base (Tannenbaum et al., 2001) render farm. The master creates and submits 
several Condor jobs for each individual of the population. Each job is responsible for: 
converting the genotype in a persistence of vision (POV) 3D script-scene file 
(http://www.povray.org/); rendering a slice of the resulting 3D scene using POV-ray; 
transferring the rendered image slice to the master. The master gathers and merges the 
rendered image slices, displaying the images as they become available. By changing the 
settings of the POV-ray initialisation file, the user can adjust the quality and size of the 
renderings, thus also adjusting the speed. 
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Figure 2 Chromosomes of a sample genotype and the visualisation of the corresponding 
functions over [0, 1] 

Type Rotation Size x-position y-position 

Max(1.79, 
+(image, x)) 

Min(x, –(1.8, 
sin(max(y, 

1.9)))) 

Min(y, –(min(x, 
x), sin(max(x, 

1.9)))) 
abs(x) –(sin(y), x) 

 
Note: In the left, image is a zero-arity operator that returns the value of the x, y pixel of 

the source image. 

4 Evolutionary engine 

In this section, we describe the evolutionary module, focusing on aspects such as 
representation, genetic operators and genotype-phenotype mapping. 

4.1 Representation 

The genotype of each individual has five chromosomes (Machado and Graca, 2008; 
Graça and Machado, 2008): <type, rotation, size, x-position, y-position> identified 
respectively by the index i ∈ {1, …, 5}. Each chromosome i is an expression-tree 
calculated for each entry ( )i

xya  of the matrix ( ) ,×∈ℜi n nM  where ( )0 1,≤ ≤i
xya  each tree 

encodes a particular aspect of the assemblage, as follows: 

• type – the output value of the type expression-tree determines what object, from a 
pool of available ones, will be placed 

• rotation – the rotation what will be applied to the object 

• size – the scaling applied to the object 

• x-position and y-position – the x and y coordinates where the object will be 
placed. 

In the experiments mentioned herein, the function set is: 

{sin,  cos,  ,  max,  min,  ,  ,  ,  ,  %,  ,  exp, }+ − ×atan abs pow avg  

where sin, cos and atan are the usual trigonometric operations; max and min take two 
arguments returning respectively, the maximum and minimum value; abs returns the 
absolute value; {+, –, ×} are the standard arithmetic operations; % the protected division 
operator (Fogel et al., 1966); pow receives two arguments, returns the base raised to the 
power; exp is a exponential function; avg, a function that takes two arguments (x, y), and 
returns the average of the values within a square window of size m centred at (x, y), m is 
specified by the user. The terminal set is: 
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{ ,  ,  ,  ,  },constantsx y getElliptical getHyperbolic random  

where x and y are variables; {getElliptical, getHyperbolic}, exploit the curvature of the 
surface (see Figure 3), and return the weight of the vertices that are locally convex and 
locally saddle shape at (x, y) position; randomconstants returns a random floating point 
value between 0 and 1. Instead of processing the geometry each time that we evaluate the 
individual, the values of the curvature are previously calculated and saved in a two 
dimensional matrix n × n, Figures 4(c) and (d) show the result of the computation. The 
operators {getElliptical, getHyperbolic} are obtained using the Gaussian curvature K, 
Kobbelt et al. (2000). In this way, we can classify the points into categories depending on 
the sign of K. A positive Gaussian curvature, K > 0, means the surface is either a peak or 
valley – elliptical points, see Figure 4(d). A negative value, K < 0, means the surface has 
saddle points – hyperbolic points, see Figure 4(c). 

Figure 3 (a) and (b) show the result of using the operators getElliptical and getHyperbolic in the 
chromosome type on two different meshes. The evolved type chromosome (c) and (d) 
almost detects the contours of the input model, and associates the white, black and grey 
regions to spheres, cubes and pyramids 

  
(a)     (b) 

  
(c)     (d) 

Note: Here, each entry of the matrix related to type chromosome was multiplied by  
255 grey levels. 

4.2 Genetic operators 

We have at our disposal three genetic operators: crossover, mutation and chromosome 
replication. The crossover is based on the standard GP subtree exchange crossover (Koza, 
1992). It randomly selects a sub-tree from each parent and exchanges them, creating two 
descendants. This operator is applied to each homologous chromosome pair, meaning it 
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can only exchange subtrees between similar chromosomes (e.g., a subtree of the 
chromosome encoding size cannot be replaced by a subtree of chromosome encoding 
rotation). For each homologous chromosome pair there is a probability of occurrence of 
crossover. The mutation operator randomly selects a subtree and replaces it by a 
randomly created one. The chromosome replication operator propagates a specific 
chromosome through the entire population, allowing the user to test it in different 
conditions. For example, the user may feel particularly pleased with the rotations applied 
to the objects in one individual, and desire to use the rotation expression in all 
individuals. Alternatively, the user may wish to test small variations of a specific 
chromosome without changing the remaining ones. To address these needs, the 
chromosome replication: 

a copies the chromosome selected by the user to all individuals, replacing the 
corresponding ones 

b applies, to each individual, a mutation to the copied chromosome. 

Since we have a set of five chromosomes, the evolution of the assemblages can be 
difficult and slow. For this reason, he/she is able to select the set of chromosomes which 
he/she wants to evolve at each new generation. 

Figure 4 The original triangle mesh (a) and the application of parametrisation with free boundary 
(b). The computation of the curvature of the surface results in the identification of 
hyperbolic regions (c) and local convex points (d) 

    
(a) (b) (c) (d) 

4.3 Genotype-phenotype mapping 

In this section, we describe how the genetic code of an individual yields an assemblage of 
3D objects. To illustrate our explanation, we resort to the genotype presented in Figure 2. 
For the time being, we will assume that the objects are placed following a regular 32 × 32 
grid, and that three types of objects are available: cubes, spheres and pyramids. 

The first chromosome, type, determines which type of object is placed. In this case, 
values in ]0, 0.33] correspond to cubes, in [0.33, 0.66] to spheres, and in [0.66, 1[ to 
pyramids. The application of this chromosome, alone, would produce the 3D scene 
depicted in Figure 5(a). Likewise, the rotation chromosome determines the rotation 
applied to each object, and size determines the scaling applied. Figures 5(b) and 5(c) 
depict the results of independently applying these chromosomes, using, respectively, 
pyramids and cubes for easier viewing. 
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Figure 5 Assemblages resulting from applying to the source image the chromosomes (a) type,  
(b) rotation, (c) size. Assemblage (d) results from the simultaneous application of  
<type, rotation, size, x-position, y-position> (see online version for colours) 

  
(a)     (b) 

  
(c)     (d) 

The regular placement of the objects on a predetermined grid has characteristics that we 
wish to avoid, namely: 

1 the regularity of the grid can become a visual distraction 

2 it only allows a homogeneous distribution of the objects, making it impossible to 
ignore regions of the input image or 3D object, or to clutter objects on certain 
regions. 

To overcome this limitation, we resort to the x- and y-position chromosomes. These 
determine the coordinates where the objects are placed. In Figure 5(d), we present the 
result of the application of the entire genotype, i.e., <type, rotation, size, x-position,  
y-position>. In this work (Machado and Graca, 2008), we present several alternative 
object placement strategies, including the use of dither masks to control the number of 
objects placed on the canvas, and we make an assessment of the experimental results 
attained through their use. In the present paper, object placement is entirely determined 
by the x- and y-position chromosomes, no dither masks are used. Up to now, we 
considered only the planar case (see Figure 6). Our next step is to extend the previous 
approach to the 3D surface (see Figures 7 and 8). 
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Figure 6 Source image and the corresponding planar assemblage (see online version for colours) 

  

Figure 7 (a) The placement of the objects on the surface* (b) the chromosome rotation dictates 
the amount of rotation in y-axis of the object** (c) an example of placement of objects 
in the surface of a sphere (see online version for colours) 

  
(a)     (b) 

 
(c) 

Notes: *First, the square object is placed in the origin o of the scene, then it is translated 
(tx, ty, tz) to the position p. **This process is applied to every object introduced in 
the scene. 
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The use of parametrisation suggests a convenient way to represent the 3D surface in two 
dimensional coordinates. Our strategy is based on free-boundary parametrisation, 
whereas fixing the boundary may introduce distortions to the placement of the objects. 
The present work uses the least squares conformal maps method described in the 
literature on mesh parametrisation, Hormann et al. (2007). What follows is the 
description of how the objects are placed in the 3D surface. First, we start by 
parameterising the input mesh, which allows to attach a two dimensional coordinate 
system to the object [see Figure 4(b)]. Second, we iterate (for any x and y ∈ 1, …, n) 
through the matrices M(iv) and M(v), related to the x- and y-position. For each pair 

( ) ( )( , )iv v
xy xya a  – we recall that it corresponds to the coordinates (u, v) in parameter  

space – we check if it is in the range of the texture coordinates of the input mesh, then we 
translate the object to the corresponding point p in 3D coordinates, see Figure 7(a). Third, 
the normal of the object nk is aligned according to the normal ni of the face where the 
point p is [see Figure 7(b)]. Fourth, we link the (u, v) coordinates to the entries of the 
matrices of the chromosomes <type, rotation, size> using the standard bilinear 
interpolation in order to extract: the scalars rotation (ry) size, and the type of object to use. 

Figure 8 The 3D model of a hand and the 3D assemblage 

   

Note: In the right, the conversion of the POV script-scene to the 3D format. 

5 Discussion of results 

The analysis of the experimental results attained by evolutionary art systems, specially 
user driven ones, entails a high degree of subjectivity: our approach is thought for  
large-scale formats. Therefore, it is somewhat difficult to adequately convey the real look 
of the evolved assemblages in the space and format available for their presentation (see 
the web page of the project for high resolution of the results). Considering these 
difficulties, we focus on the presentation of assemblages created by our approach, 
highlighting the influence of the artistic decision in making the final outcomes. Further, a 
more detailed implementation issues are explored. 
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To characterise the strengths and limitations of the proposed method we used 
different input models. Figure 9 depicts the object library used in the course of the 
experiments. This library is composed, mainly, by shapes that are evocative of tapestry. 
The creation of these structures followed the rule: include objects of varying size and 
complexity. In this regard, the rationale is that large objects could be used to create the 
raw shape of the input model, whereas small and thin objects could be used to provide 
detail to areas of the input model that we wished to emphasise. 

Figure 9 Object library used in experiments 

 

 

The experimental results confirm our previous findings, that is, the user is able to guide 
the evolutionary algorithm to regions of the search space that are a good match to her/his 
aesthetic preferences. Moreover, the process is not effortless: several generations – 
usually 40 to 60 – are needed in order to produce assemblages that convey the artistic 
views of the user. 

As it can be observed in Figure 10, there is an improvement in the distribution of the 
objects. Due to the simplicity of the x- and y-position chromosomes, the first population 
shows a sparse distribution of the objects. While a more interesting and even placements 
start to emerge in the 40th population. During the evolution phase, we always preserved 
the individuals that covered more area of the surface. In addition, it was interesting  
to notice that in the individuals that generate balanced distributions, one of the 
chromosomes x- or y-position tends to display an almost perfect gradient from 0 to 1, and 
the other one a more complex pattern. This characteristic allows an even exploration of 
the spatial distribution. 

With respect to the issue of performance, the experiments were performed on an Intel 
Core2Duo, 2.8GHz, Windows machine. The computational effort to render each 
assemblage is considerable, and it depends mainly on the amount of objects present in the 
assemblage. For instance, in the first population, depicted in Figure 10, the second 
individual in the top row has 1,154 objects, while the 1st individual in the middle row of 
the 40th population has 113,349 objects. The remaining individuals have in average 
approximately 27,000 objects. The complexity of each individual may be overwhelming 
(see for instance Figure 12). As such, during the evolution process, we use a simplified 
version of the objects, and we compute low quality renders. Taken together, the rendering 
of each individual can vary approximately from 10 seconds to 4 minutes, for low and 
high number of objects. 

It is interesting to note that like planar assemblages (Machado and Graca, 2008; 
Graça and Machado, 2008), the richness of the object library plays an important role. 
While in planar assemblages the overarching object’s colour discerns the image in the 
assemblage, in 3D model assemblages it can be discarded, which opens new possibilities 
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[see Figures 11(c) and 11(d)]. Furthermore, the computation of the curvature allows the 
evolved program to adapt to the curvature characteristics of the mesh. 

Figure 10 The nine individuals of populations 1 and 40 

Population 1 

Population 40 

Notes: For the purposes of demonstration and to afford a better visibility of the placement, 
rotation, and scaling transformations we used simple primitives (cube, sphere and 
pyramid) in the assemblages. For this particular evolution, we used the following 
parameters: population size 9; probability crossover 0.25; probability of mutation 
0.01; resolution to preview the individuals: 320 × 240. 
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Figure 11 A top view rendering of the 3D model (a) and three assemblages produced using 
different individuals and object libraries (b, c, d) (see online version for colours) 

  
(a)     (b) 

  
(c)     (d) 

Note: In the case of the assemblages (c) and (d) each library object has a predetermined 
colour. 

Concerning to the placement of the objects on the surface of the mesh, the present 
method relies on the use of the texture coordinates to place the 3D objects. This technique 
can be restrictive, to see similar results with the same genotype in different 3D models, it 
is necessary to unfold the mesh always in same fashion. In addition, all objects with 
coordinates that do not belong to the UV space of the input mesh are discarded, which 
prevents the complete exploration of the chromosomes. However, the texture coordinates 
are very useful to encompass certain areas of the model, and simplifies the representation 
of the mesh. 
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Figure 12 Detail of the Figure 8 and Figures 11(c) and 11(d) (see online version for colours) 

 

 

6 Conclusions 

The fundamental premise being pursued in this article concerns the use of an interactive 
evolutionary tool for the generation of assemblages of 3D objects. In summary, the 
experimental results show that the initial choices done by the user – selection of the type 
of input and object library – have a significant impact in the final outcome. In addition, 
the interactive evolutionary process allows the users to explore the search space of 
assemblages, and to guide evolution in accordance to their artistic intent, eventually 
finding regions of the space that match his/hers preferences. In this way, the users are 
able to recognise their artistic signature in the evolved assemblages and to develop a 
sense of authorship of the evolved artworks. 

In planar assemblages, Figure 6, the source image becomes perceptible mainly due to 
the colour assigned to each object and due to the applied rotations. Although the objects 
provide the texture, it is mostly their colouring and rotation that allows the viewer to 
perceive the original image. In 3D model assemblages, the colour is not required for the 
recognisability of the object and its use can, therefore, be freely explored. The developed 
system uses the parametric space. A number of alternative strategies are possible, for 
instance the use of the mesh’s volume (Theobalt et al., 2007), which may overcome the 
limitations of the texture coordinates. Another approach involves the use of a particle 
system similar to the work of Pastor et al. (2003). The particles are fixed to the surface of 
the 3D models; each particle indicates a potential location of an object. To the extent that 
this approach succeeds, the distribution of objects dynamically adapts to the surface of 
the input object. Any of these strategies potentially improves the distribution of the 
objects. 
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Some of the best evolved genotypes proved their generality by producing engaging 
assemblages when applied to images and 3D models different that those used during the 
evolutionary process. These generic abilities can be explained by the functional 
dependence of the assemblage on the input image. But we have not foreseen them. In 
future work, we intend to conduct experiments with the specific goal of promoting the 
generalisation abilities of the genotype. 

Currently, the produced artworks are printed on large-scale printer. We wish however 
to explore other media, that may convey better the 3D nature of the pieces. Namely, we 
are currently exploring the possibility of using computerised numerical control mills to 
create sculptures. 
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