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Abstract 
A novel approach to the creation of assemblages of three-dimensional (3D) digital objects is presented and explored. The 
proposed evolutionary art approach allows the evolution of the distribution of 3D objects, which are placed on a virtual 
canvas, constructing a non-photorealistic transformation of a source image. The approach is thoroughly described, giving 
particular emphasis to the interaction between the artist and the tool, and to influence of the decision making process in the 
final outcome. The experimental results presented highlight the differences between several styles of images, evolved in 
accordance to different artistic purposes, showing the potential of the approach for the production of large-scale artworks. 
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1. Introduction 
The main goal of the research presented in this paper is the 
creation of an interactive evolutionary art tool for the 
creation of large-scale assemblages of 3D digital objects. 
Being an interactive tool, we are particularly interested in 
ensuring that the users are able to convey their artistic 
preferences and ideas through it. That is, the users should 
be able to significantly influence the final outcome of the 
process, express themselves through the use of this tool, 
and recognize their signature in the evolved works, thus 
connecting with them at an emotional and artistic level. 

The main artistic sources of inspiration for this work are 
pointillism, mixed media assemblage of objects, and 
ornamentation techniques (e.g. similar to the ones found in 
Gustav Klimt works). From a scientific point of view, areas 
such as evolutionary non-photorealistic rendering and 
image's filter evolution are of particular relevance. 

Synthetically, the evolutionary process leading to the 
creation of an assemblage of 3D digital objects can be 
described as follows: 

i. The user provides an input source image (e.g. a 
photograph);  

ii. A library of 3D objects, that will be used to generate 
the assemblage, is created or selected by the user;  

iii. Through a user-guided evolutionary process the user 
evolves the rotation, size and placement of the objects:  

a. An initial random population of object 
assemblages is created;  

b. The user indicates those that better match his/hers 
ideas;  

c. The next population is created through the 
recombination and mutation (see section 4.2) of 
the genetic code of the selected assemblages;  

d. The process is repeated from step (b) until the an 
assemblage that satisfies the preferences of the 
user is found 

iv. The 3D scene – which constitutes a non-photorealistic 
portrayal of the source image – is rendered using a 
raytracer;  

v. Depending on the nature of the employed objects and 
on the complexity of the scene the artist may chose to 
physically replicate the virtual assemblage. 

During the evolutionary stage, the user explores different 
object distributions. The placement, size and rotation of the 
objects have a considerable impact on the final outcome. 

The distribution of objects can help to saturate a deceptive 
movement and give rhythm to the final work. On the other 
hand, it can also completely distort the input image. The 
nature of each object is preserved, i.e. the shape and 
materials used in each object are not altered by the 
evolutionary process. However, the color of each object is 
determined by the color of the corresponding pixels of the 
input source image. 



The proposed approach can be seen as an instance of 
Computer-Aided Creativity [1], in the sense that the tool 
takes care of several aspects related with the technical 
execution of the piece, allowing the user to focus on the 
creative aspects of the task, and provides mechanisms that 
allow the exploration of a search space of potential pieces, 
guided by the artistic and aesthetic preferences of the user. 
In this way, the work arises from the interaction between 
user and tool. Due to the stochastic nature of the process, 
serendipity plays an important role, sometimes leading the 
artist to explore unforeseen paths and diverting the artist 
from his/hers original ideas. On the other hand, user 
guided-breeding promotes the recombination of the 
individuals that are closer to the aesthetic preferences of the 
user, leading to the successive refinement of the 
populations. 

We begin with a short introduction to evolutionary art. In 
the third section, we make an overview of the different 
modules of the system. In the fourth section, we describe 
the evolutionary process. The experimental results are 
presented and analyzed in the fifth section. Finally, we 
draw some conclusions and discuss aspects to be addressed 
in future work. 

2. Evolutionary Art  
Through time, natural evolution gave rise to a huge variety 
of species adapted to their environment. The diversity of 
their shapes, and of the ways they are able to survive, 
interact and change their environments, allows us to claim 
that nature is creative, or, if we prefer to see it this way, the 
mother of all creativity. From a different perspective, 
natural evolution can also be regarded as an optimization 
process, i.e. finding the fittest species for a given 
environment. 

From Holland's work [2] onwards, natural evolution has 
also become the basis for several Artificial Intelligence 
approaches, usually referred to as Evolutionary 
Computation (EC). In general terms, EC approaches imitate 
the fundamental mechanisms of evolution: selection, which 
guarantees that the most apt individuals have greater 
probabilities to survive and reproduce; reproduction, which 
ensures the inheritance of the parents' genetic material, as 
well as variation, which allows evolution. Thus, EC 
transforms Darwin's ideas into algorithms, allowing the 
evolution of populations of solutions for specific problems 
[2]. 

Currently, there are four main EC approaches: Evolutionary 
Programming [3], Evolution Strategies [4], Genetic 
Algorithms [2] (GAs), and Genetic Programming [5] (GP). 
All of them have been successfully applied to a large 
variety of problems, mainly optimization ones. 

The idea of using EC for artistic purposes can be traced 
back to Richard Dawkins [6], who developed a simple GA 
that allowed the evolution of the shapes of virtual 
organisms called “biomorphs”. One of the key ingredients 
of this approach was user interaction: the user evaluated the 
individuals of the population according to his/hers 
preferences. Those that were better classified had higher 
probabilities of generating offspring. As a consequence, the 
populations gradually become closer to the user's 
preferences. This technique of artifact generation has been 
named interactive evolutionary computation. 

Following the same set of ideas, Karl Sims used GP to 
evolve populations of images. In GP the genetic code of 
each individual (genotype) is a program, in Sims' case a 
symbolic expression that once rendered becomes an image 
(phenotype). The user assigns fitness to the images, thus 
indirectly determining the survival and mating probabilities 
of the individuals. The fittest individuals have a higher 
probability of being selected for the creation of the next 
population, which is generated through the recombination 
and mutation of the genetic code of the selected 
individuals. 

The seminal work of Karl Sims allowed the evolution of 
striking imagery, and the success of his system lead to the 
application of evolutionary computation approaches to 
several artistic tasks, including: image generation, 
animation, sculpture, architecture and design (a thorough 
survey can be found in [7]). 

Several researchers have explored the use of evolutionary 
algorithms to create image filters and non-photorealistic 
renderings of source images. Focusing on the works where 
there was an artistic goal, we can mention the research of: 
Neufeld and Ross [8,9], where GP [5], multi-objective 
optimization techniques, and an empirical model of 
aesthetics are used to automatically evolve image filters; 
Lewis [10], which evolved live-video processing filters 
through interactive evolution; Machado et al. [11], where 
GP is used to evolve image coloring filters from a set of 
examples; Yip [12], which employs GAs to evolve filters 
that produce images that match certain features of a target 
image; Collomosse [13, 14], which uses image salience 
metrics to determine the level detail for portions of the 
image, and GAs to search for painterly renderings that 
match the desired salience maps. Several other examples 
exist, however a thorough survey is beyond the scope of 
this article. 

3. Overview of the System 
Figure 1 presents the architecture of the system, which is 
composed of two main components: an Evolutionary 
module and a Previewing and Rendering module. 



The evolutionary module is an expression-based GP [15] 
interactive breeding tool, which is responsible for the 
evolution of a population of assemblages. The user selects 
two parents, which generate offspring through crossover 
and mutation. Crossover recombines the genetic code of the 
parents, being, therefore, responsible for the exploitation of 
characteristics that are already present in the current 
population. The mutation operator induces small changes in 
the genetic code, promoting exploration. An analogy can be 
drawn between this process and some aspects of the artistic 
production of several artists. For instance, Francis Bacon 
was known to preserve and select fortuitous “accidents”, 
creating in this way a painting that was different from the 
originally envisioned one. In a similar way, the users 
preserve and select variations of the individuals, evolving 
images that are match their preferences. Although 
randomness plays an important role, as evolution 
progresses the choices of the user are continuously steering 
the algorithm to a particular style of imagery, making the 
images increasingly refined and unique. 

To see the generated assemblages the user can use the 2D 
or 3D previewer. The 2D previewer runs on the master 
computer. It evaluates the genotypes and places objects 
accordingly. However, as the name indicates, it doesn't take 
into consideration the 3D nature of the objects, lighting 
effects, shadows, etc. The 3D previewer employs a render 
farm to produce a 3D raytraced rendering of the scene. For 
that purpose it uses POV-Ray1, an open source raytracer. 

4. Evolutionary Process 
In this section we describe the evolutionary module, 
focusing on aspects such as representation, genetic 
operators and genotype-phenotype mapping. 

                                                                 
1 http://www.povray.org 

4.1 Representation 
The genotype of each individual has five chromosomes: 
<type, rotation, size, x-position, y-position>. Each 
chromosome is an expression tree (see Fig. 2), encoding a 
particular aspect of the 3D assemblage of objects, as 
follows:  

<type> – The output value of the type expression tree 
determines what object, from a pool of available ones, 
will be placed;  

<rotation> – The rotation that will be applied to the object;  

<size> – The scaling applied to the object.  

<x-position> – The x coordinate where the object will be 
placed;  

<y-position> – The y coordinate where the object will be 
placed.  

The internal nodes of the tree are functions from the 
following set:  

 {sin, cos, max, min, abs, +,-,×,%,diff}, 

where sin and cos  are the usual trigonometric operations; 
max and min are functions that take two arguments 
returning, respectively, the maximum and minimum value; 
abs returns the absolute value; {+,-, ×} are the standard 
arithmetic operations; % the protected division operator 
[5]; diff a function that returns the difference between the 

 
Figure 1 The main modules of the system. 

 
Figure 2 Example of a crossover operation. Considering 
the individuals A and B as parents, and the, randomly 
selected, crossover points P1 and P2, would yield as 
descendants the individuals A’ and B’. 
 



current pixel and the one specified by the coordinates 
passed by the arguments of the function. 

The leaf nodes are terminals. These can be variables (x, y), 
random floating constants, or the source input image. 

4.2 Genetic Operators 
Three genetic operators are used: crossover, mutation and 
chromosome replication. 

The crossover operator is based on the standard GP sub-
tree exchange crossover [5]. It randomly selects a sub-tree 
from each parent and exchanges them, creating two 
descendants (see Fig. 2). This operator is applied to each 
homologous chromosome pair, meaning it can only 
exchange subtrees between similar chromosomes (i.e. a 
subtree of the chromosome encoding size cannot be 
replaced by a subtree of a chromosome encoding rotation). 
For each homologous chromosome pair there is a 
probability of occurrence of crossover. 

The mutation operator randomly selects a subtree and 
replaces it by a randomly created one. 

The chromosome replication operator was introduced to 
propagate a specific chromosome throughout the entire 
population, thus allowing the user to test it in different 
conditions. E.g., the user may feel particularly pleased with 
the rotations applied to the objects in one individual, and 
wish to use the same rotation expression in all individuals. 
Alternatively, the user may wish to test small variations of 
a specific chromosome without changing the remaining 
ones. To address these needs, the chromosome replication 
(a) copies the chromosome selected by the user to all 
individuals in the population, replacing the corresponding 
ones, (b) applies, to each individual, a mutation to the 
copied chromosome. 

4.3 Genotype–Phenotype Mapping 
In this section we describe how the genetic code of an 
individual is transformed in a assemblage of 3D objects. 
We assume that three types of objects are available: cubes, 
spheres and pyramids. 

In Fig. 3a, 3b and 3c we present examples of, respectively, 
type, rotation and size chromosomes, and the results of 

type rotation size x and y position 
max(1.79,+( image,x)) min(x,-(1.8, sin(max(y,1.9) ))) min(y,-(min (x,x),sin(max (x,1.9)))) <abs(x),        -(sin(y),x)>  

    
(a) (b) (c) (d) 

Figure 3 The expression trees of a sample individual (top). Assemblages resulting from the application of: type (a), 
rotation (b), size (c), to the source image of Figure 4a, assuming a regular grid placement of the objects. Assemblage (d) is 
the result of simultaneously applying <type, scale, rotation, x, y>. 
 

                       
Figure 4 Source image and corresponding dither masks. The black pixels indicate positions where objects can be placed. 
An entirely black mask would allow a thorough filling of the canvas. 

 



their individual application, assuming that the objects are 
placed following a regular 35×35 grid. 

This regular placement of the objects has characteristics 
that we wish to avoid, namely: i) the regularity of the grid 
can become a visual distraction; ii) it only allows a 
homogeneous distribution of the objects, making it 
impossible to ignore regions of the image, or to clutter 
objects on certain regions. 

 

To overcome this limitation we introduced the x- and y-
position chromosomes, which determine the coordinates 
where the objects are placed. In Fig. 3d, we present one x-
position and one y-position chromosome, as well as the 
result of the application of the entire genotype, i.e. 
simultaneously applying <type, rotation, size, x-position, y-
position>. 

The number of objects placed is also relevant. To address 
this issue we resort to masks. A modified version of a 
space-filling curve dither algorithm [16, 17] is applied to 
the source image. By establishing different parameter 
settings, one can create different dither masks (see Fig. 4). 

The phenotype is then rendered in several stages, each 
using a different dither mask. In each stage, the positions of 
the objects are calculated using the x- and y-position 
chromosomes, but an object is only placed if the mask 
allows it. 

The masks allow an additional degree of control to the 
artist. For instance, he may chose to create different masks 
for different regions of the image, thus indirectly 
determining de level of detail of different areas, which can 
be particularly useful to highlight salient detail or to 
abstract areas of less importance. 

5. Experimentation 
The analysis of the experimental results attained by 
evolutionary art systems, specially user driven ones, entails 
a high degree of subjectivity. In our case, there is an 
additional difficulty: our approach is thought for large-scale 
formats, therefore is close to impossible to adequately 
convey the real look of the evolved images in the space and 
format available for their presentation. 

Considering these difficulties, we focus on the presentation 
of assemblages created by our approach, highlighting the 
influence of the artistic decision making in the final 
outcomes. 

To assess the strengths and weaknesses of our approach we 
used different types of input image, namely “still” face 
photographs, and upper body photographs that suggest 
movement. In Fig. 4, we present one of the source images 
used in these experiments, and the corresponding dither 
masks using during rendering. 

 

 
(a) 

 
(b) 

Figure 5 Object libraries used in the experiments. 
 



  
(a) (b) 

  
(c) (d) 

Figure 6 Samples of images evolved using the object library presented in Fig. 5a. 



  
(a) (b) 

  
(c) (d) 

Figure 7 Samples of images evolved using the object library presented in Fig. 5b. 



 
Figure 8 Detail of Fig. 7a. 

 
The creation of the libraries of objects followed the 
following general rule: Include objects of varying size and 
complexity. The rationale is that large objects could be 
used to create the raw shape of the input image, while small 
and thin objects could be used to provide detail to the areas 
of the image that we wished to emphasize. Figure 5 depicts 
the two different object libraries used in the course of the 
experiments. 

The first object library (Fig. 5a) was composed, mainly, by 
branches, leafs and other botanical inspired shapes. The 
second object library (Fig. 5b) is used to attain assemblages 
with an appearance that is evocative of tapestry and woven 
baskets. For this purpose, we employed simpler objects 
that, when assembled, could produce the interweaved 
appearance that we aimed for. In addition, we created 
several objects that resemble strands to provide detail to 
areas of the image that we might want to reproduce closer. 

In the first stages of evolution, our posture was mainly 
exploratory, in the sense that we welcomed individuals that 
differed in style from the ones that we had already saw, 
thus valuing novelty. In later stages, namely once a 
promising assemblage was found, we exerted a higher 
degree of guidance, forcing the algorithm to focus on 
variations of this assemblage. In this way, we promoted the 
successive refinement of the promising assemblage 
transforming it in one that better matched our preferences. 

In Fig.6, we present several examples of images evolved 
using the library of botanical shapes. As it can be observed 
the choices made by the user during the evolution have a 
significant impact in the final outcome. 

While creating Fig. 6a, we wished to attain an abstract 
sand-like effect. This was eventually achieved by an 
individual that places a vast number of objects, which 
causes a high degree of overlap, making individual objects 
imperceptible, and producing the effect we were seeking. 
No dither mask was used in this rendering. Figure 6b is the 
result of serendipity: during the course of evolution a 
fortuitous mutation created an abstract assemblage with an 
interesting contour. This image was later refined during the 
course of several generations leading to the creation of the 
presented assemblage. 

The evolution of the assemblages presented in Fig.6c and 
Fig. 6d was characterized by the selection of the individuals 
that better captured the expression of the source image, 
giving particular emphasis to the eyes. 

In Fig. 7 we present several assemblages evolved using the 
second object library (see Fig. 5b). As it can be observed 
by the comparison of these assemblages with the ones of 
Fig. 6, a change in the object library can have a dramatic 
effect on the final outcome. 



During the evolution of the assemblages presented in Fig. 7 
we gave particular emphasis to several different aspects, 
including: the rendering of the eyes (See Figs. 7a and 8); 
conveying an sense of motion (Fig. 7b), abstracting detail 
and mimicking texture (Fig. 7c); overall expressiveness 
(Fig. 7d). 

Its interesting to notice that although the objects are placed 
individually on the virtual canvas, there is a sense of 
continuity which results, mostly, from the artificial lines 
created by the regularity in object alignment and rotation. 
This effect can be better observed in the neck region of 
Figs. 7a and 9a and on the background of Fig. 7b. 

Although the objects are three-dimensional, they are placed 
in a two-dimensional plane. Therefore, the sense of volume 
and depth present in the assemblages (e.g. Fig. 7b) results 
from matching the colors of the objects to those of the 
original photograph. For the creation of the assemblage 
presented in Fig. 9a, we explored a variation of the 
previously described evolutionary technique. In this case 
the assemblage was evolved in two stages: in the first an 
assemblage for the face photograph was evolved; in the 
second we created an assemblage for the red earring. These 
two assemblages were merged, with the objects 
reproducing the earring placed closer to the viewpoint. 

Figures 9b and 9c display two additional images, created 
with an object library composed exclusively by spheres. 

6. Conclusions and Future Work 
We described a novel evolutionary approach for the 
generation of assemblages of 3D digital objects, presenting 

results attained with different source images and object 
libraries. The experimental results show that the initial 
choices done by the user – selection of source image and of 
object library – have a significant impact in the final 
outcome. In addition, the interactive evolutionary process 
allows the users to explore the search space of assemblages, 
and to guide evolution in accordance to their artistic intent, 
eventually finding regions of the space that match his/hers 
preferences. In this way, the users are able to recognize 
their artistic signature in the evolved assemblages and to 
develop a sense of authorship of the evolved artworks. 

The meshing of objects is the main characteristic of the 
works produced in the course of our experiences. The 
source image becomes perceptible mainly due to the color 
assigned to each object and due to the applied rotations. 
Although the objects provide texture, it is mostly their 
coloring and rotation that allows the viewer to perceive the 
original image. The repetition of an object, or groups of 
objects, in regular patterns gives a sensation of movement 
and continuity.  

Currently, the produced artworks are printed on a large-
scale printer. We wish however to explore other media, that 
may convey better the 3D nature of the pieces. Namely, we 
are currently exploring the possibility of using CNC 
(Computerized Numerical Control) mills and 3D laser 
engraving to create sculptures. 
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Figure 9 Some additional results. 
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