
An Architecture for Hybrid Creative
Reasoning *unformatted version

Amílcar Cardoso, Ernesto Costa, Penousal Machado, Francisco C.
Pereira and Paulo Gomes

Centro de Informática e Sistemas da Universidade de Coimbra (CISUC),
Pinhal de Marrocos, 3030 Coimbra, Portugal {amilcar, ernesto,
machado, camara, pgomes}@dei.uc.pt

Abstract

Creativity is one of the most remarkable characteristics of the human mind. It is
thus natural that Artificial Intelligence’s research groups have been working
towards the study and proposal of adequate computational models to creativity.
Artificial creative systems are potentially effective in a wide range of artistic,
architectural and engineering domains where detailed problem specification is
virtually impossible and, therefore, conventional problem solving is unlikely to
produce useful solutions. Moreover their study may contribute to the overall
understanding of the mechanisms behind human creativity.

In this text, we propose a computational hybrid architecture for creative
reasoning aimed at empowering cross contributions from Case-Based Reasoning
(CBR) and Evolutionary Computation (EC). The first will provide us a long-term
memory, while the later will complement with its adaptive ability. The background
knowledge provided by the memory mechanism can be exploited to solve
problems inside the same domain or problems that imply inter-domain transfer of
expertise.

The architecture is the result of a synthesis work motivated by the observation
that the strong similarities between the computational mechanisms used in systems
developed so far could be explored. Moreover, we also propose that those
mechanisms may be supported by a common knowledge representation formalism,
which appears to be adequate to a considerable range of domains. Furthermore, we
consider that this architecture may be explored as a unifying model for the creative
process, contributing to the deepening of the theoretical foundations of the area.

2

1 Introduction

Creativity is consensually viewed as one of the most remarkable characteristics of
the human mind. Its study has been a challenge for many scientists and
researchers, specially for those of areas such as Cognitive Science and Psychology.
During the last years, a growing number of Artificial Intelligence groups have been
working towards the study and proposal of adequate computational models to
creativity. As a result of this endeavor, a new AI area is emerging, usually named
Creative Reasoning (CR). Artificial creative systems are potentially effective in a
wide range of artistic, architectural and engineering domains, where detailed
problem specification is virtually impossible and, therefore, conventional problem
solving is unlikely to produce useful solutions. Moreover their study may
contribute to the overall understanding of the mechanisms behind human
creativity.

Several explanation models, originated in the Psychology and Cognitive
Science fields, have been proposed for the creative process, like the ones
suggested by Dewey [1], Guilford [2], and Wallas [3]. Generally, they split the
process into steps, which may be summarized (with more or less differences) into
the following ones: problem formulation and knowledge assimilation; conscious or
unconscious search for a solution, proposal of a solution, and verification of the
proposed solution. These models may constitute an important source of inspiration
to computational models of creativity. Also relevant are the studies of De Bono
[4]around the concepts of lateral and vertical thinking and their relation with
creativity.

We may also look for other sources of inspiration besides human creativity.
When we look to nature we see that all living species struggle permanently for life.
The Neo-Darwinist theory, revising Darwin first ideas at the light of modern
genetics, give us a scientific framework that explains how life forms survive by
adapting themselves to environmental changes. In the center of this process is a
mechanism that selects the fittest individuals and recombines their genetic
material. Putting together “good” parts of different individuals can give rise to a
new and better one. This is clearly a way of producing innovative solutions [5].
But, is nature capable of producing creative solutions? This is a more difficult
question to answer. In fact the biological adaptive processes have a limitation: they
do not have a long-term memory (although we can view multiploidy as a limited
memory mechanism), and memory is an important part of the creative process.
Thus, if we want to have a computational model of creativity, inspired in nature,
we must introduce a memory element. This points out to hybrid solutions.

In the past some creative systems based either in Case Based Reasoning (CBR)
or Evolutionary Computation (EC) techniques were proposed. CBR approaches
can explore previous knowledge and have good explanatory capabilities.
Nevertheless, they have difficulties exploring large search spaces. On the other
hand, EC approaches are efficient in dealing with complex search spaces and
explore parallelism in a natural way. However, they lack long-term memory and

An Architecture for Hybrid Creative Reasoning 3

the incorporation of problem-specific knowledge and the interpretation of results is
problematic.

In this text, we propose a computational hybrid architecture for creative
reasoning aimed at empowering cross contributions from CBR and EC. The first
will provide us a long-term memory, while the later will complement with its
adaptative ability. The background knowledge provided by the memory
mechanism can be exploited to solve problems inside the same domain or
problems that imply inter-domain transfer of expertise.

The architecture is the result of a synthesis work motivated by the observation
that the strong similarities between the computational mechanisms used in systems
developed so far could be explored. Moreover, we also propose that those
mechanisms may be supported by a common knowledge representation formalism
which appears to be adequate to a considerable range of domains. Furthermore, we
consider that this architecture may be explored as a unifying model for the creative
process, contributing to the deepening of the theoretical foundations of the area.

The remaining of this document is organized as follows. In Section 2 we give a
synthetical presentation of the background concepts of CBR and EC. Those who
are familiar with these two techniques may safely skip this section. In Section 3 we
present a state of the art on creative systems, as well as on hybrid systems which
resort on CBR and EC. In Section 4 we give an overview of some systems
developed by our team using CBR and EC approaches. These systems motivate the
presentation, in Section 5, of a common representation formalism and a unifying
hybrid architecture. Section 6 is devoted to the presentation of an example which
illustrates the application of the proposed architecture to creative reasoning. In
Section 7 we present some improvements to the architecture which we are
currently exploring. In Section 8 we draw some conclusions.

2 Background

This Section is intended to the readers who are not familiarized with CBR and/or
EC. We will briefly present the basic concepts behind CBR and EC, focusing on
the main steps of their basic cycles and on the main issues around representation.

2.1 Case Based Reasoning

Case-based reasoning (CBR) uses past experience to solve new problems [6][7]. In
a CBR system, experience is stored by way of cases, which form a case library.
Cases are episodic chunks of knowledge that are used in the resolution of a new
situation. The problem solving process in CBR is based on the premise that
identical problems have identical solutions. When a CBR system has a new
problem to solve, it retrieves cases with similar problem descriptions. If the
selected cases are different from the target problem, they must be modified in

4

order to fit it. This modification of a retrieved case is called adaptation. Finally,
the new case created by adaptation is evaluated and may be stored in the case
base. The reasoning steps are illustrated in Figure 1, where the iterative nature of
the process is outlined.

Case representation is crucial in CBR, since the case representation delimits the
CBR steps. For example, cases can only be efficiently retrieved if the important
features of the problem description are represented. Cases can be represented by
attribute/value pairs, hierarchies of concepts, objects (object oriented style),
textual description, causal models, or combination of them.

In the case retrieval phase, the CBR systems must decide which cases are the
best candidates to solve the target problem. There are several ways of doing it, but
the most used ones are: using an indexing scheme, where there is a set of indexes
associated to each case that are used to retrieve the case; using a metric function
like K-nearest neighbor to assess the similarity of the target problem and the case
problem’s description. Both have their advantages and disadvantages.

Case adaptation is one of the most unexplored phases of CBR. This may be
explained by the complex and domain dependent nature of the adaptation process.
In general terms, during adaptation, the CBR system must first identify the
differences between the target problem and the cases’ problem’s description, and
then apply modification operators to change the case solution. These operators can
be production rules, formulas, heuristics, or specific procedures.

The evaluation of the solutions generated by adaptation is important to provide
feedback to the system. In this phase, the new solution is evaluated and,
accordingly to the evaluation’s result, it is stored in the case library and presented
to the user, or it is rejected, which leads the system back to the adaptation phase.
The evaluation can be done automatically or by a human.

The case learning step introduces flexibility and also the capability to adapt to
new situations. In this phase, the feedback gathered from the evaluation phase can
be stored, in order to be used again in similar situations. Several things can be
learned, and the new case created to solve the target problem is the more basic and
obvious of them. Other things can be learned, for instance, new adaptation
operators, cases where the solution failed, and so on.

In summary, CBR provides a fast reasoning mechanism, specially suited for
domains where there is no causal model, can be used for evaluation where no
algorithmic methods exist, and can avoid previous failure situations. Cases are also
useful for interpretation of ill-defined concepts. One of the main drawbacks of
CBR is that it is difficult to make the right index selection. Also, the solution space
is focused around the case points, thus constraining the possible solutions.

An Architecture for Hybrid Creative Reasoning 5

Retrieval

Target
Problem

Adaptation

New
Case

Evaluation

Case
Learning

Figure 1. The CBR cycle.

2.2 Evolutionary Computation

In recent years, a new paradigm for problem solving, called Evolutionary
Computation (EC), has emerged. EC can be viewed as a set of stochastic search
procedures inspired by the biological principles of natural selection and genetics
[8]. Historically, these sets can be divided into four families, namely, Evolution
Strategies [9][10], Evolutionary Programming [11], Genetic Algorithms [12]and
Genetic Programming [13]. In spite of their differences they are all instances of the
following general algorithm:

Procedure EC
 t=0;
 Intialize P(t);
 Evaluate P(t);
 While stoping_criterium_false do
 t = t+1;
 P’(t) = select_from P(t-1);
 P’’(t) = use_op_modification P’(t);
 Evaluate P’’(t);
 P(t) = merge P’’(t) , P(t-1)
End_do

6

We start with a set of candidate solutions, called a population, usually defined
randomly. Each element of that initial population, called an individual, is then
evaluated using a fitness function that gives a measure of the quality of that
element. Each individual is in fact an aggregate of smaller elements or units, which
are called genes. Each gene can have different values or alleles. The algorithm
enters then a cycle in order to generate a new population. We start by
probabilistically selecting the fittest individuals. Then they undergo a modification
process, using genetic inspired operators like crossover or mutation that will
eventually alter the alleles of some genes. Finally, the old and new populations are
combined and the result becomes the next generation that will in turn be evaluated.
The cycle stops when a certain condition is achieved (for instance, a pre-defined
number of generations). The selection mechanism introduces the possibility of
exploiting promising parts of the search space. The crossover operator works by
exchanging genetic material between two individuals, while the mutation operator
modifies the alleles of some individuals. That way they promote the exploration of
different areas of the search space. A good balance between exploitation and
exploration is essential for the success of the EC algorithm. Another important
aspect is the question about what is manipulated. The algorithm just described
work, generally, with a low-level representation of each individual called its
genotype. Nevertheless, in complex problems, the fitness function acts upon a
high-level representation of an individual, its phenotype. It is thus necessary to
have decoders from genotypes to phenotypes.

It is outside the scope of this text to refer all the variants of an EC algorithm.
The interested reader can have a deeper idea about the many EC algorithms that
were proposed and their practical applications in Back et al. [8].

The success of EC algorithms is linked to their ability to solve difficult
problems. Problems where the search space is large, multi-modal and when
domain knowledge is scarce and/or difficult to obtain. When this is the case EC
proves to be more efficient than traditional algorithms.

3 Creative Systems and Hybrid Systems: State of the
Art

There are multiple approaches to Creative Reasoning, and a diversity of
applications has been explored by researchers of the area. In this Section we will
first give an overview of the present state of the art in computational creativity,
focusing on the paradigms used, the domains in which they were applied and some
successful experiences.

Afterwards, we will also present an overview of works that combine CBR and
EC in a hybrid way.

An Architecture for Hybrid Creative Reasoning 7

3.1 Creative Systems

Several AI techniques have already been applied to tasks that are usually
considered to require creativity, such as Design, Music Composition, Image
Generation, Scientific Discovery, Architecture, and others. One of the paradigms
that has been used with this purpose is Case-Based Reasoning. It has been
thoroughly applied, for example, in Creative Design, which is generally defined as
a cognitive task where some knowledge for the mapping process between the
problem and solution spaces are missing [14][15]. The solutions generated in
creative design define new classes of artifacts, thus expanding the space of known
designs. In this exploration process, designers often use old solutions to solve new
problems – which suggests the suitability of CBR to this problem. In creative
design, the old solutions are changed in novel ways or used in novel situations.
Several researchers have used the CBR paradigm as a framework for building
systems to tackle this task. Some very interesting CBR-based works in this area are
those of: Kolodner and Wills [16], which apply case indexing accordingly to
various perspectives, in order to allow the search of the case memory for
remindings that might be represented in a different way in the light of the current
problem; Simina and Kolodner [17], which propose a computational model that
accounts for opportunistic behavior, which is considered to be characteristic of
creative behavior; Sycara and Navinchandra [18][19], which use a thematic
abstraction hierarchy of influences as a retrieval method. In this framework, case
organization provides the main mechanism for cross-contextual reminding, which
is very important in creative design. They also stress the importance of
composition of multiple cases and case parts.

Still in the CBR area, we can find works in Music Composition, such as Pereira
et al [20], presented later in this chapter, which applies musical analysis structures
to build new musical pieces. Each of these structures is considered a
decomposable case. The work of Arcos et al [21] on expressive performance based
on CBR is also an interesting one. Its cases consist on information extracted from
spectral analysis of performances and the scores themselves. From this set of
cases, the system infers a set of possible expressive transformations for a given
new phrase.

Case Based Reasoning has also been applied in Architecture [22], and we
believe it is a promising paradigm to other kinds of creativity demanding tasks.
As nature by itself is known to be creative, it is not surprising that Evolutionary
Computation paradigms have also been used as a mean to implement
computational creativity. The difficulty of creating an evaluation function in
domains such as image or music generation has led, frequently, to the use of
Interactive Evolution (IE). In these systems the user evaluates the individuals, thus
guiding evolution. IE has great potential as the countless already developed
applications show. In the field of music, it has been applied in the evolution of
rhythmic patterns and melodies [23]; in jazz improvisations [24]; in composition
systems [25]. The works of Dawkins [26], which uses IE to evolve artificial

8

creatures based on the aesthetic preferences of the user, Sims [27], Todd [28],
Rooke [29] and Machado et al [30], which resort to IE to evolve images, and
Baker [31], where IE is used to evolve human faces, are some examples of the
application of IE in the field of image generation. IE has also been successfully
applied in the fields of design [32][33] and animation [27] [34] [35].

As far as we know, in the field of image generation there has been only one
attempt to automate fitness assignment, the work of Baluja et al [36]. However, the
results produced by this system, which uses neural networks to evaluate images,
were disappointing.

There have been several attempts to automate fitness assignment in the musical
field. Some examples of this type of work are: Horner et al [37], which use GAs to
evolve thematic connections between melodies; McIntyre [38] which uses GAs to
generate musical harmonization; Spector [39][40] which resort to Genetic
Programming to evolve programs that generate jazz melodies from an input jazz
melody; Papadopoulos et al [41] use GAs to evolve jazz melodies based on a
progression of chords. However, and in spite of the numerous applications,
Wiggins et al [42], which has studied the performance of this type of systems,
defends that these approaches are not ideal for the simulation of human musical
thought.

CBR and EC are not the only approaches to the resolution of tasks demanding
creativity. Other techniques currently used are Knowledge Based Systems, as in
Harold Cohen’s Aaron [43] and Ed Burton’s ROSE [44], in Visual Arts, and the
work of Pachet and Roy [45] in Music; Mathematical Models (e.g., the Markov
Chains of Cambouropoulos [46] to assist on music composition); Grammars (e.g.,
the works of Cope [47] in Music, and of Stiny [48] in architecture).

3.2 Hybrid Systems Based on CBR and EC

There are a few systems that try to combine CBR and EC. Most of the work was
done by Sushil Louis and his co-workers [49][50][51][52], which built the CIGAR
system, and by Ramsey and Grefensttete [53]. The main idea of CIGAR was to use
a base of cases to initialize the population, and then let the EC algorithm do its
typical adaptation work. The first cases are former solutions of old problems
obtained by running the GA alone (see Figure 2).

An Architecture for Hybrid Creative Reasoning 9

CBR ModuleGA Module

GA

Pop(0) Case Base

Case Index
Solutions

Initialization

Figure 2. The CIGAR system

Louis used his system to solve a similar problem or a set of similar problems.
He also studied how many cases to inject into the population, coming from the
base of cases, and which ones should be chosen. Finally, he also studied the
possibility of injecting cases not only into the initial population but also in
intermediates ones. Some of the problem domains used to test these ideas were
combinational circuit design, open shop scheduling and re-scheduling and function
optimization. The results presented showed that with a judicious choice the
combination CBR and EC gave better results. Other authors had also used the idea
of injecting new, random generated, individuals into a population at certain times.
For instance, Eshelman [54], in his algorithm named CHC, replaces the mutation
operator, used in the standard genetic algorithm to insure population diversity, by a
restarting process applied to the population. Once again, the definition of when to
do it, how many new individuals should be generated randomly and which ones
should be kept from the previous generation is an important issue and is most
relevant when we deal with creative systems.

As far as we know, nobody has tried to use a hybrid system to produce creative
solutions. Nevertheless, Goldberg [5] states that there are forms of adaptation
which go beyond innovation. He suggests two ways about how this can be
achieved: remapping the primitives, that is, changing the representation; and
performing metaphorical transfer, that is, the transfer of a solution from a known
problem domain to another.

4 Creative Reasoning

During the last years, the authors have centered most of their research work on the
development of CBR-based and EC-based approaches to Creative Reasoning. In
this Section we will present with some detail the main applications developed so

10

far. Some common characteristics of the works, particularly in which concerns to
the adoption of a tree-like knowledge representation, will constitute the basis for
the hybrid architecture that we will propose in subsequent Sections.

4.1 Creative Reasoning with CBR

The capability of reminding previous experiences to draw analogies with the
current situation has made case-based reasoning a good framework to support
creative design [16][55]. In the next subsections we present several approaches to
creative reasoning with CBR which we have developed so far. There are three
main systems: IM-RECIDE, a generic creative reasoning shell; CREATOR and
CREATOR II, creative design systems in the area of digital circuit design; and
SICOM/INSPIRER, a system that uses CBR for creating new musical pieces.

4.1.1 IM-RECIDE

IM-RECIDE [55] is a generic creative reasoning shell that uses CBR as the main
reasoning mechanism. Its reasoning cycle comprises several steps: problem
definition, space initialization, problem solving, verification and evaluation. The
first step comprises problem specification, where the user states a new problem in
terms of goals and constraints. In the initialization phase the system clusters cases
in different sets, each one called a reasoning space. These spaces allow a gradual
exploration of the case library enabling the system to generate new designs. In the
problem-solving phase, reasoning operators are applied to old solutions for
generation of new ones. If no solution is generated within a specific space, the
system switches to the next space from the list that was created during the
initialization phase. When a solution cannot be generated, and there are no more
spaces to search for, the user is asked to give a solution for the problem. After a
solution has been generated it has to be verified and evaluated. In a first step, it is
internally validated by failure cases (verification). Failure cases represent
constraints in the generation of new solutions. If a failure case is triggered by the
new solution, then the solution is rejected. If a solution passes the internal
validation, the user is asked to accept or reject the new case. If she/he rejects the
new solution, then the user is asked to explain this rejection in terms of failure
cases. After this, the process returns to the problem-solving step. This last phase is
called evaluation because the user has to make a decision about the originality and
validity of the case.

Case representation is very important for a CBR system, because it determines
the capabilities of the system. Within IM-RECIDE, a case is represented by a
triple <P, S, R> with P and S, respectively, a set of facts representing the problem
and solution descriptions, and R a set of rules representing a causal justification
(for a more detailed description see [56]). A fact is composed by a function name
(functor), and n arguments, with n equal or greater than zero. The justification is a

An Architecture for Hybrid Creative Reasoning 11

causal tree, linking problem facts to solution facts through rules. The case library
also comprises failure cases representing design constraints.

For case retrieval, we consider four spaces of knowledge: Space I, Space II,
Space III and Space IV. Each space comprises the cases possessing a set of
common properties concerning the target problem. Each space forms a cluster in
the case library. The definition of each space is done in terms of the characteristics
that the cases within this space share with the target problem. Creativity can be
seen as the result of reasoning on spaces of cases increasingly further away from
the target problem. As the system goes from space I to space IV, it drifts away
from the problem, trying to find nontrivial solutions. The retrieval process starts
with the cases in Space I, going from space to space, until it reaches Space IV.

Space I comprises the cases for which all functor/arguments pairs belonging to
the problem description, match the new problem. Space I is considered the space
normally associated with the current problem. Most of the current CBR systems
use cases from this space. Cases for which all functors describing the problem
component match the new problem, belong to Space II. This space is related with
problems similar to the target problem. This space is often called as the innovation
space, where parametric adaptations are usually done, sometimes resulting in using
a novel value for a well-known functor. Space III contains the cases which have
explanation rules with all functor/arguments pairs matching the target problem.
Space III is defined using causal knowledge, which makes similarities between
cases and the target problem more abstract, but also more important. This space is
usually associated with creative solutions, but also with bizarre ones.

Space IV gathers all cases that contain at least one explanation rule with at least
one functor/arguments pair matching the target problem. Space IV is like a
speculation space where cases have remote similarities with the target problem,
because constraints were relaxed. This relaxation allows the system to explore
cases considered distant from the target problem. Once again, the knowledge used
to do this is the causal knowledge comprised in the explanations.

We now describe the adaptation mechanisms used in IM-RECIDE, called
adaptation operators. These operators modify cases in the current space in order to
solve the new problem. The cases that are used for generation of the new case are
called the source cases. The selection of the cases for adaptation is performed
through a metric [57]. These cases are selected from the set of cases in the current
working space.

Each space possesses a set of predefined adaptation operators. These operators
are used accordingly to the type of cases that the space comprises. The operators in
Space IV are more powerful than the operators in Space I. This is an obvious
situation, because cases in Space IV have less similarities with the problem. In
order to reach a valid solution, more difficult adaptation operations must be done.
Associated with the operator capabilities is the complexity of the computational
process originated by each operator, the cognitive risks involved, and the
probability of generating a more creative solution.

12

A solution of one case belonging to Space I does not need to be modified in
order to become a solution to the target problem. Therefore, a metric is used for
selection of the best case, and its solution is the one for the target problem. Cases
in Space II have only some different values regarding the problem description. In
order to meet the target problem requirements, it is necessary to modify the old
case solution. This solution is derived from the old case by the propagation of the
differences in the old problem to the old solution. The causal knowledge is used to
guide the propagation process. The selected case is chosen using a metric function,
which measures the similarity of cases against the target problem. Space III
generates new solutions by splitting and merging of case pieces. IM-RECIDE
starts selecting the most similar case from the set of episodes comprising Space III.
Then, it splits the case into pieces selecting the pieces that match part of the target
problem. These pieces are then merged to form a new case. If the problem
description in the new case has some missing parts in regard to the target problem,
other cases are selected to contribute with case pieces to complete it. Pieces from
these cases that are relevant for the new case are merged with it. In space IV, there
are several adaptation operators, and they can be applied in sequence. Splitting and
merging is one of the operators within this set. The other operators are elaboration,
reformulation, substitution, and generalization. Elaboration comprises relaxing
and/or strengthening of constraints described in a case problem, in order to match
the target problem description. The case solution is suggested as the new solution.
Reformulation involves changing the new problem description according to
constraints imposed by failure cases. Substitution comprises replacing a
functor/arguments pair in the past case in order to make it similar to the new
problem. The solution that results from this substitution is given as the one for the
new problem. Generalization involves considering values initially not considered
in the problem description of a past case, and assuming the case solution remains
unchanged.

After a solution is created, it is verified by the failure cases. If the solution
matches one failure case, then it is rejected. Only solutions that the system assumes
to be correct, by its current knowledge, are shown to the user.

4.1.2 CREATOR & CREATOR II

CREATOR is a case-based creative design system in the domain of digital circuit
design. CREATOR comprises four different modules: reasoning, knowledge base,
evaluation and meta-control. The system was developed having the SBF models
[58][59] as the case representation formalism. The reasoning module is
responsible for problem elaboration, retrieval of relevant cases and adaptation of
cases. The knowledge base comprises the case base, general domain knowledge
and memory structure. Hierarchies of functions, structures and substances are used
as general domain knowledge. This is important for several purposes, one of which
is the construction of the memory structure. The memory structure has two main
goals: to index cases and to allow space exploration. The evaluation module

An Architecture for Hybrid Creative Reasoning 13

verifies and validates the generated solutions, while the meta-control module
controls and co-ordinates all the other modules. The evaluation module and
adaptation processes are being implemented in CREATOR II, which is the
successor of CREATOR.

Within our framework, design cases are represented in the form of SBF models.
These models are based on the component-substance ontology developed by
Bylander and Chandrasekaran [60]. A case comprises three parts: (1) problem
specification; (2) explanation; (3) design solution. The explanation is in the form
of a causal chain, representing the design behavior. The case solution describes the
design structures that accomplish the functionalities described in the target
problem. So the problem specifications are related to the design function, the
explanation to the design behavior, and the solution to the design structure.

The problem specification comprises a set of high level functionalities (HLFs)
and a set of functional specifications (FSs) which must be held by the design.
HLFs are abstract functionalities, used to help the user in specifying the design
problem. While a HLF is a function that can be decomposed into several
subfunctions, an FS is undecomposable. An FS is defined in detail in accordance
to input and output substances. A design problem is represented by a tree of
functionalities, where leaves are FSs and the high levels in the tree represent
HLFs. Each leaf in the tree represents an FS in a schema comprising the initial
behavior state, the final behavior state, behavioral constraints, external stimulus to
the design, and structural constraints.

The design solution is in the form of a hierarchy of device structures. Each
structure can be viewed as a set of device structures where substances can flow
through. The structure schema comprises information such as: structure class, sub-
structures, super structures, relations, properties and functions. Figure 3 shows the
high level representation of an Arithmetic and Logic Unit (ALU), where each node
in the tree represents a structure. Each of these structures has a corresponding
structure schema.

ALU

Arithmetic
Functions

Logic
Functions

Add Subtract And Xor Not Or

Figure 3 – A representation for an Arithmetic and Logic Unit (ALU) in CREATOR.

14

A case explanation describes the causal behavior of the design in terms of
directed graphs (DGs). The nodes of a DG represent behavioral states and the
edges represent state transitions. One or more substance schemas can compose a
behavioral state. A substance schema characterizes the properties and the property
values of a substance. A state transition represents the conditions under which the
transition between behavioral states occurs.

The memory structure that supports case retrieval comprises two substructures:
(1) a hierarchy of HLFs and FSs, and (2) a graph, whose nodes represent cases,
and whose links describe functional differences between cases. The hierarchy of
functions is used as an index structure for selection of the starting cases. The
starting cases have at least one FSs in common with the target problem. These
cases are then used as starting points for exploration of the case graph. The leaves
of the hierarchy are nodes that describe a HLF instance. These nodes are called
List of Functions (LF) and they comprise a set of HLFs and/or FSs. These nodes
are extracted from cases and index the case they belong, thus connecting the
hierarchy of functions to the graph of cases. Two cases can be connected by
difference links, which represent the differences between the problem description
of the cases linked. A difference link is created only when the cases it connects
have at least one FS in common. A difference link connecting two cases comprises
three parts:
• the set of FSs that belong to the first case but don’t belong to the second one;
• the set of FSs that belong to the second case but don’t belong to the first one;
• the set of FSs common to both cases.

The reminding of useful experiences in a case-based system is a critical issue.
The accuracy of case retrieval in case-based creative reasoning is important, but
even more important than that is the capability to explore several solutions. Within
our framework, accuracy is achieved by the use of functional indexes, and space
exploration takes place through the use of difference links in the graph of cases.
The FSs defined in the target problem are used as probes to retrieve the set of
starting cases. Then, a best starting case is selected as a starting point in the search
space. The search space is represented by the graph of cases. Exploration is
performed using the difference links necessary to go from one case to another.

An important feature of the exploration algorithm is the selection of cases
accordingly to the adaptation strategy that will be used for generation of the new
solution. The retrieval algorithm explores the case graph, searching for cases with
features suitable for the adaptation method that will be applied. This makes
retrieval an adaptation-guided process as defined by Smyth and Keane [61],
although there are some differences to their process. Two of the adaptation
strategies considered within our framework are thematic abstraction and
composition. Thematic abstraction is an adaptation strategy that generates a new
solution from a single case. It consists on the transfer of knowledge from a case to
the target problem, in order to create a new design. The composition strategy deals
with one or multiple cases. It splits and/or merges case pieces generating new
solutions - it is a multi-case strategy.

An Architecture for Hybrid Creative Reasoning 15

4.1.3 SICOM/INSPIRER

Following some of the features from IM-RECIDE, we designed INSPIRER [62]
for creative problem solving in domains in which knowledge can be represented by
hierarchically structured cases. This framework was deeply tested in the Music
domain, and its implementation, SICOM [20] generated some pieces of music
from a small case-base with three compositions from a XVIIth century Portuguese
baroque composer, Carlos Seixas. In SICOM, each case consists on a highly
detailed analysis with several layers of abstraction, in which a piece of music is
progressively subdivided according to thematic groupings (following harmonic,
melodic and rhythmic principles from Music Theory). The result is a strictly
hierarchical structure complemented by causal links that establish non-hierarchical
relations (see Figure 4). This kind of structured organization is common within
music and some other artistic domains like architecture, literature and visual arts.

Generally, each case in SICOM is a complete piece of music, represented by a
set of interrelated nodes (case-pieces) extracted from music analysis.

Music

Part2 PartNPart1

Section2 Section1Section1
.
. . .

Music structure

Section2 Section2Section1

Global

Parts

Sections
Phrases
Sub-phrases
Cells
Notes

Figure 4 – Representation of a musical piece in SICOM

The generation of a composition consists on the creation of a new structure
applying case-pieces from the case-base. This generation is taken in a top-to-
bottom and left-to-right sequence, as illustrated in Figure 5 (i.e., it starts by
choosing the more abstract and temporally preceding nodes).

16

Figure 5 – Sequence of generation of a musical piece in SICOM

One key point of systems such as INSPIRER/SICOM is that of the similarity
metric. It is according to this measurement that it selects which nodes to apply or
to avoid in a new composition. Unfortunately (or fortunately), there are no
formulas to evaluate a good solution in the Musical domain. Moreover, we don’t
have a clear definition of what is or is not a good choice for any specific situation
during the composition of a new music. We do have the clear notion that context
and structure can be determinant to the successfulness of a choice and we have a
set of composition rules to help on evaluation and adaptation. The similarity metric
that we apply in SICOM [63] takes two main aspects of a node into account: its
intrinsic properties (e.g., its internal attributes, like the melodic contour it defines)
and its context (e.g., the causal links connected to it, the attributes of its parents, its
position in the whole structure). After applying this similarity metric, SICOM can
use one of several orderings to select the node (e.g., choosing the most similar; the
least similar; avoid the first 20% of the candidate list, etc.).

The output compositions of the project SICOM/INSPIRER, although being not
comparable to those of a professional composer, are nevertheless very interesting,
specially taking into account that it has a library with only three cases. A particular
example of its performance is the introductory part of its compositions. Each of the
three Carlos Seixas’ pieces had a similar introductory part, but SICOM was able to
generate several new structures with different and correct (according to the style)
solutions.

4.2 Creative Reasoning with Genetic Programming

As stated before EC has great potential for creative reasoning. In this section we
will make a brief yet comprehensive description of NEvAr (Neuro Evolutionary
Art).

NEvAr is an evolutionary art tool, inspired in the works of Sims [27] and
Dawkins [26], that allows the evolution of populations of images from an initial
one using Iterative Evolution. The presentation of the underlying model will
follow. We will finish this section by showing some experimental results and
drawing some overall remarks.

4.2.1 Representation

Like in most GP applications, in NEvAr the individuals are represented by trees.
Thus, the genotype of an individual is a symbolic expression, which can be
represented by a tree.

The trees are constructed from a lexicon of functions and terminals. The
internal nodes are functions and the leaves terminals. In NevAr, we use a function
set composed mainly by simple functions such as arithmetic, trigonometric and

An Architecture for Hybrid Creative Reasoning 17

logic operations. The terminal set is composed by the variables x and y, and by
constants which can be scalar values or 3d-vectors1.

The interpretation of a genotype results on a phenotype, which in NEvAr is an
image. The easiest way to explain how this is achieved is through an example. Lets
consider the function f(x,y)=(x+y)/2 with x, y ∈ [-1,1]. This function can be
represented by the tree presented in Figure 6.

/

+

x

2

y

Figure 6. Representation of f(x,y)=(x+y)/2 in the form of a tree.

How can we visualize this function? One hypothesis is making a tridimensional
graphic such as the one presented in Figure 4a. Another option would be to view
this graphic from the top and indicate the value of the function through a color.
The value -1 could correspond to 0% luminance (black) and 1 to 100% luminance
(white), the values in between –1 and 1 would be represented by intermediate
luminance values. This approach yields an image similar to the one presented in
Figure 7b. In Figure 8 we present some examples expressions and the images
generated by them.

a)
-1 -0.5

0
0.5

1
-1

-0,5

0
0,5

1

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

z

x

y

b)
-1 -0,75 -0,5 -0,25 0 0,25 0,5 0,75 1

-1

-0,75

-0,5

-0,25

0

0,25

0,5

0,75

1

x

y

Figure 7. a) Tridimensional graphic of f(x,y)=(x+y)/2. b) A color graphic of the same
function.

1
 The three dimensional vectors are necessary to produce color images: each dimension of

the vector corresponds to a color channel (Red, Green and Blue).

18

+

Yxor

YX

X mod

X +

X Y

+

X Y

Figure 8. Some simple functions and the corresponding images.

4.2.2 Genetic Operators

In NEvAr we use two kinds of genetic operators: recombination and mutation. As
recombination operator we use the “standard” GP crossover operator [13] which
exchanges sub-trees between individuals (see Figure 9): given two individuals A
and B, we select randomly two crossover points (one node of A and one of B) PA
and PB; these nodes are the roots of two sub-trees; then we swap the sub-trees,
thus obtaining two new individuals A’ and B’.
A B A' B'×

+

x

√

√

x 10

PB
/

√

x4

+

+

5

yx

×

PA ×

+ √

x 10+

5

yx

×

/

√

x4

+ x

√

Figure 9. Example of crossover between the individuals A and B.

We use five mutation operators that are similar to the ones used in [27]:
− Sub-tree swap – randomly select two mutation points and exchange the

corresponding sub-trees.
− Sub-tree replacement – randomly select a mutation point and replace de

corresponding sub-tree by a randomly created one.
− Node insertion – randomly select an insertion point for a new, randomly

chosen, node. If necessary, create the required arguments randomly.
− Node deletion – the dual of node insertion.
− Node mutation – randomly select a node and change its value.

These operators induce changes at the phenotype level. In Figure 10, we show
examples of the application of the crossover operator. As can be seen, the
crossover between two images can produce interesting and unexpected results.

An Architecture for Hybrid Creative Reasoning 19

Additionally, there are cases in which the images seem to be incompatible, i.e.
images that, when combined, result in “bad” images.

Figure 10. In the top row, the progenitor images. In the bottom row, some examples of the

results generate by the crossover among them (color images available at
http://www.dei.uc.pt/~amilcar/softcompbook/fig10.htm)

In Figure 11 we give examples of images generated through mutation. Once
again, the results of this operation can give quite unexpected results.

Figure 11. In the top row, the original image. In the bottom rows, several mutations of the
original image. The images a and b where generated through node mutation, c and d

through node insertion, e through node deletion, f and g through sub-tree swap, h by sub-
tree replacement (color images available at

http://www.dei.uc.pt/~amilcar/softcompbook/fig11.htm)

20

4.2.3 Model

In NevAr, the assignment of fitness is made by the user and, as such, she/he has a
key role. The interaction of human and computer poses several problems. For
instance, we cannot use populations with a large number of individuals, or make
big runs. It would be unfeasible to expect that a human would be willing to
evaluate one hundred individuals per population over a period of one thousand or
more populations. Thus, to produce appealing images, NevAR must do it in few
evolutionary steps and in a low number of individual’s evaluations.
The fact that NEvAr is an interactive tool also has the advantage that a skilled user
can guide the evolutionary process in an extremely efficient way. She/he can
predict which images are compatible, detect when the evolutionary process is stuck
in a local optimum, etc. In other words, the user can change its evaluation criteria
according to the specific context in which the evaluation is taking place. In the
design of NevAr, we took under consideration these aspects.

Figure 12 shows the model of NEvAr. In the following we will call experiment
to the set of all populations, from the initial to the last, of a particular GP run.

NEvAr implements a parallel evolutionary algorithm, in the sense that we can
have several different and independent experiments running at the same time. It is
also asynchronous, meaning that we can have an experiment that is in population
0, for example, and another one that is in population 100. Additionally we can
transfer individuals between experiments (migration) and can also transfer
individuals from one population to another.

Experiment

Experiment 2

Experiment 1

Pop. nPop. 0 Pop. 1 Current
Pop.

��� ���

��� ���

Experiment N

User
Evaluation

Genetic
Operators

New
Population

Migration

M
ig

ra
tio

n

Pop. nPop. 0 Pop. 1 Current
Pop.

Pop. nPop. 0 Pop. 1 Current
Pop.

��� ���

Figure 12. The evolutionary model of NEvAr. The active experiment is depicted in gray.

We will illustrate the utilization of this model through an example. Let’s
suppose that the user creates, to start, two different experiments, a and b, the initial

An Architecture for Hybrid Creative Reasoning 21

population of a is randomly generated and has size N, and the initial population of
b has size 0. The user focuses his efforts in experiment a and evaluates the
individuals of successive populations generated by NEvAr. When the user finds
images that she/he likes, she/he adds these images to the current population (in this
case the population 0) of experiment b. If at a given point the user feels that the
evolutionary process would benefit if the next population was generated by the
combination of the individuals of the current population with individuals
previously transferred to population b, she/he adds those individuals to the current
population and the evolutionary process continues.
If the user, at a certain point, chooses to focus on experiment b, NEvAr will
generate a new population from the current one (population 0), which is
composed, exclusively, by individuals transferred from a. Thus, the initial
population of experiment b is not random, but exclusively composed by fit
individuals that were originally generated in other experiments. In fact, experiment
b can be seen as a database of images, which may be used to initialize future
experiments. We may generalize this approach by organizing a gallery of images.

As stated before, NEvAr also allows the migration within experiments. This
feature is important due to the limited size of each population, since it allows the
revival of images from previous populations. It is also possible to go back to a
previous population and change the evaluation of the individuals, which allows the
exploration of different evolutionary paths.

In Figure 13 we give some examples of images generated by NEvAr). These
images were presented on the exhibit “Art and Aesthetics of Artificial Life”,
Nicholas Gesseler (curator), which took place at the Center for the Digital Arts of
the UCLA.

22

Figure 13. Some of the images presented the “Art and Aesthetics of Artificial Life” exhibit
(color images available at http://www.dei.uc.pt/~amilcar/softcompbook/fig13.htm)

The results achieved with NEvAr clearly show the power and potential of
interactive evolution techniques, and the advantages of the reuse of past solutions
(images). The galleries of images play an increasingly important role in the
generation of new images. The chosen representation allows the recombination of
images in interesting ways yielding unexpected, yet fit, images.

The results also show that it isn’t necessary to resort to complex primitives,
such as fractals or other complex functions, to generate complex and interesting
images. What is necessary is a set of simple functions that can be combined in
complex ways.

5 The Unifying Architecture

The analysis of our previous work, described in the last section, took us to a point
where we realized that it was possible to settle a common framework

An Architecture for Hybrid Creative Reasoning 23

(representation language) for the objects manipulated by the algorithms in different
domains. The common representation language which emerged is a set of
hierarchical structured objects (HSOs). It can be defined more precisely by means
of a grammar that we partially show below using the traditional BNF formalism:

<structure> ::= <node> | <node>({<structure>}+)
<node> ::= <name> | <name>({<attribute>}+)
<attribute> ::= <type-attrib>(<name>)
<type-attrib> ::= link-in(<value>) | link-out(<value>)

It is possible to use the same common language to represent objects from

different domains. The objects represented in Figures 3, 4 and 6 are, in fact,
instantiations of the above described HSOs, and only the non-terminals <name>
and <value> depend on the domain. The main advantages of the adoption of such a
representation are that it permits a full integration of EC and CBR mechanisms in
the same architecture, and also the inclusion of objects from different domains in
the same knowledge base. This last characteristic makes the implementation of
methaforical transfer mechanisms possible, which will be further explored in
Section 7.

The proposed architecture (Figure 14) builds upon this representation and
models the creative process as an iterative sequence of steps, which resembles
some models proposed by psychologists like by Guilford [2], Dewey [1],
Mansfield and Busse [64], Poincaré [65], Rossman [66], Wallas [3] and others.
The main goal is to propose new ideas, which are transformations of hierarchical
structured objects contained in a Knowledge Base (KB). The quality of a new idea
depends on its novelty and on its suitability to solve a given problem. Two key
modules play a central role in the process: the Selector and the Generator. The first
one is intended to produce ideas (which are also hierarchical structured objects) by
exploring the knowledge space. The second one manipulates the selected ideas and
proposes new ones to the user (typically, a human user). To conveniently feed the
Generator, the first module must be fluent (i.e., must have the capability to
produce a wide variety of ideas), even if at the expenses of taking cognitive risks.
The second module, which must contribute to control the overall quality of the
proposed ideas, may adopt two strategies: it may try to increase the overall novelty
of the proposed ideas (e.g., by recombining them) or act towards an increase of
their overall appropriateness (e.g., by adapting them to the problem to solve).

The KB is initially set up through a Knowledge Filler, which may be controlled
by a human user or act autonomously. It also may fill the KB with domain
knowledge or randomly create the necessary structures. The KB may evolve
during the process. This is done through a Feedback Controller, which may feed
the KB with new ideas proposed by the Generator. Similarly to the Knowledge
Filler, the Feedback Controller may act autonomously or not.

24

GeneratorIDEASSelector NEW IDEASKNOWLEDGE
BASE

Feedback ControllerKnowledge
Filler

Figure 14. The proposed architecture

We can draw a parallelism between the proposed architecture and the way EC
and CBR solve problems (see Table 1). In EC, a population (KB) is evaluated and
individuals (ideas) are selected according to a fitness function. This may be seen as
a selection process. Afterwards, genetic operators play the role of the Generator
and proposed ideas are fed back to the KB. In CBR, cases (ideas) from a case base
(KB) are selected according to a metric. Adaptation operators transform (generate)
the selected cases. Proposed cases may be fed back to the KB.

Table 1. Similitude between the hybrid architecture, EC and CBR
Proposed Architecture Evolutionary

Computation
Case Based Reasoning

Knowledge Base Population Case Base
Selector Evaluation/Selection

(w./fitness function)
Selection (w./ metric)

Generator Genetic Operators
(crossover, mutation, ...)

Adaptation Operators

The architecture may be explored in many ways. The objects may be produced,
used and manipulated either by CBR and EC mechanisms. We may use CBR in the
Selector and apply genetic operators in the Generator to improve diversity. We
may also use the fitness function to select ideas and adaptation operators to gain
adequacy. We may even change the mechanisms for the Selector and the Generator
in each cycle; the choice for each combination of them may depend on the
evaluation of the intermediate results and/or on the specific goals in mind.

In the next section, we will show an example of how this architecture may deal
with creative problem solving using the proposed common knowledge
representation.

6 Example

The following example illustrates a possible way of combining EC with CBR in
the framework of the proposed hybrid architecture, showing how a case library and
a retrieval metric can be coupled with an EC system.
Consider that we have a case library of images and that the user chooses one of
these images (see Figure 15). Using a similarity metric, the system compares the
chosen image with the other images in the database. In this example, and for the

An Architecture for Hybrid Creative Reasoning 25

sake of simplicity, we decided to use the root mean square error as similarity
metric.

 It is worth noting that this measure isn’t the most adequate for our goals. It
would be probably best to use a metric that takes into account the similarity
between the genotypes of the individuals. Considering that the individuals are
represented by graphs (trees in this particular case), we could use, for instance, the
Hamming distance or the maximal common sub-graph as metrics [67].

Figure 15. Some of the cases in the case library. The selected image has the score of 100

(color image available at http://www.dei.uc.pt/~amilcar/softcompbook/fig15.htm)

The most similar images will be used to initialize de EC algorithm. Thus, these
images will be added to the initial population. In this example the number of
images added was five, including the image selected by the user. The first
population (see Figure 16) will therefore be composed by five images from the
case library and eleven randomly created images (population size was set to
sixteen).

Figure 16. The initial population. The first five images were retrieved from the case library
using the similarity metric; the other images were randomly created (color image available

at http://www.dei.uc.pt/~amilcar/softcompbook/fig16.htm)

From this point on, the system uses the EC process to create new populations of
images. The process is similar to the one described earlier: the user makes the
assignment of fitness, and the genetic operators are the ones previously described.

In Figure 17, we can see the first generated population. The numbers bellow the
images indicate the fitness score assigned to each image by the user. In Figure 18,
we show the twentieth population, yet to be evaluated.

26

Figure 17. Population number 1 (color image available at
http://www.dei.uc.pt/~amilcar/softcompbook/fig17.htm)

Figure 18. Population 20, not yet evaluated (color image available at

http://www.dei.uc.pt/~amilcar/softcompbook/fig18.htm)

While the evolutionary process is taking place, images that have a fitness score
above a given threshold value are added to the case library, thus feeding the case
library with the best individuals found. In Figure 19 we show a partial snapshot of
the case library after twenty populations. The first row of images comprises the
images that were added to the case library from the generated populations.

Figure 19. Snapshot of the case library after twenty populations (color image available at

http://www.dei.uc.pt/~amilcar/softcompbook/fig19.htm)

We verify that by using the proposed model this way we speed up significantly
the process of image generation.

An Architecture for Hybrid Creative Reasoning 27

7 Improvements

The proposed architecture opens an exciting range of research opportunities. We
are currently exploring ways of taking the best of it to produce creative systems
with improved capabilities.

The unifying characteristics of the architecture leads us to a situation in which
there can be several different domains represented through the same principles and
coexisting in the same environment. According to many creativity researchers
(e.g., Guilford [68]) and to our own intuition, the ability to interrelate ideas from
different domains can be determinant to a creativity outcome. In fact, the core of
many creative products (be they artistic, scientific or others) lies exactly in the
association of apparently unrelated ideas. Moreover, the Human Being inhabits a
heterogeneous world and his own survival depends upon the understanding and
processing of such a complex and widespread information. This takes us to the
conclusion that our architecture can be much improved (i.e., be more creative) if
we add a process to interrelate different domains that can coexist in the same
knowledge base.

Metaphor theories [69][70] centre mainly on the understanding of metaphors,
establishing correspondences between concepts of the domains involved (e.g., in
the metaphor “Star Wars is the King Arthur Saga”, Veale and Keane establish
correspondences between the concepts that are present in both stories). In a project
named Dr. Divago, Pereira and Cardoso [71] explore these Metaphor theories to
search for cross-domain mappings that are used to make translations of concepts
between domains. These translations are necessary to apply cases (Dr. Divago is
also a CBR project) from one domain onto the other.

We think the ability to establish cross-domain transfer of knowledge is a vital
future development for our work. With this feature, our systems will be able to
explore more wide and varied spaces, and get ideas from apparently sterile
grounds.
Another improvement that we are exploring comes from the observation that, in
our framework, cases may be represented as partonomic hierarchies, whose leaf
nodes can be represented as trees, thus making a two level case representation.
This makes the representation more flexible to solve problems at different levels of
granularity. It also gives the possibility to exploit the case representation from the
evolutionary and adaptation viewpoints, allowing these different representation
levels to be used in more complex reasoning processes. The more abstract level of
the representation is associated with the functional description of a case, while the
less abstract level is associated with the structural and/or behavioral aspect of the
node it is associated with.

As an example of this kind of representation, we return to the case already
presented in Section 4, describing an Arithmetic and Logic Unit (ALU). In Figure
3 we have shown the more abstract level representation that describes how the
ALU is divided. The leaf nodes of this hierarchy can have attached a tree

28

representing the function implementation. For instance, Figure 20 describes the
implementation of the Xor, that is used in the ALU. This dual representation
enable us to do a two stage evolutionary process. We can first evolve the
functional description of the case and then evolve the structure associated to each
function node. In the ALU example, we can reach a different ALU, while at a finer
level we can also evolve the Xor implementation.

Nand4

Xor

Nand2 Nand3

Nand1 Nand0A

A B

B

A B

Figure 20. The representation of the Xor node in Figure 3.

8 Conclusions

Creative Reasoning is increasingly challenging research groups mainly from the
area of Artificial Intelligence. Several computational models have been proposed,
mostly inspired on cognitive and on biological models, and a wide range of
artistic, architectural and engineering domains of application are being explored.
There is a diversity of computational approaches to the problem, but Case Based
Reasoning and Evolutionary Computation are the most common techniques and, in
our opinion, the most promising ones. EC techniques offer diversity while adapting
to environmental changes, are efficient in dealing with complex search spaces and
explore parallelism in a natural way. CBR techniques can explore previous
knowledge in versatile ways and have good explanatory capabilities. We argue that
creative reasoning will benefit from the cross-contribution of these techniques.

During the last years we have separately explored CBR and EC-based
computational approaches to creativity. In Section 4 we have briefly presented
some of the results achieved, focusing on four developed applications in the
domains of Design, Music Composition and Image Generation. From these efforts
two key ideas emerged: first, the representation formalisms we were using could

An Architecture for Hybrid Creative Reasoning 29

be generalized into one common knowledge representation; second, there were
strong similarities between the computational mechanisms we were using.

As a result of this synthesis work we proposed in Section 5 a hybrid architecture
which empowers cross contributions from CBR and EC. The architecture builds on
the above mentioned common representation language.

The proposed architecture, as was illustrated by the example in Section 6, fully
integrates EC and CBR techniques: we may use the typical mechanisms of both
paradigms in each of its core modules, the Selector and the Generator. The generic
characteristics of the representation language and the computational mechanisms
we use allow its application to a wide range of domains. Moreover, in spite of
being a creativity-oriented architecture, its features leads us to believe that it may
prove useful in other problem-solving tasks.

This framework also enables the coexistence of objects from multiple domains
in the same knowledge base, providing the means to explore advanced creativity-
related concepts like metaphoric transfer.

9 References

[1] Dewey, J. (1919). How we think. Boston: D. C. Heath. Boston, USA.
[2] Guilford, J. P. (1968). Intelligence, creativity and their educational implications. San

Diego, CA: Robert Knapp.
[3] Wallas, G. (1926). The art of thought. Nova Iorque: Harcourt Brace.
[4] De Bono, E. (1986). El pensamiento lateral. Manual de la creatividad. Barcelona,

Spain: Paidós. (in Spanish)
[5] Goldberg, D. (1998). The design of innovation: lessons from genetic algorithms,

lessons for the real world, IlliGAL Report Nº 98004, February 1998, Department of
General Engineering, University of Illinois at Urbana-Champain.

[6] Kolodner, J., (1993). Case-Based Reasoning. Morgan Kaufman Publ., San Mateo, CA.
[7] Aamodt, A. and Plaza, E., (1994). Case-Based Reasoning: Foundational Issues,

Methodological Variations, and Systems Approaches (39-59). AICOM Vol7 N.1
[8] Back, T., Fogel, D., Michalewicz, Z. (eds.) (1997). Handbook of Evolutionary

Computation, Oxford University Press, New York.
[9] Rechenberg, I. (1965). Cybernetic solution path of an experimental problem, Lybrary

Translation nº 1122, Royal Aircraft Establishement, Farnborough, UK.
[10] Schewefel, H-P. (1965). Kybernetishe evolution als strategie der experimentallen

forschung in der stromungstechnik, Diplomarbeit, Tecnische Universitat Berlin, 11965.
[11] Fogel, L. (1962). Autonomous automata, Industrial Research 4: 14-19.
[12] Holland, J. (1975). Adaptation in natural and artificial systems, University of

Michigan Press, Michigan..
[13] Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by

Means of Natural Selection, MIT Press, Cambridge, MA, USA.
[14] Gero, J. (1994b). Computational Models of Creative Design Processes. In Dartnall, T.

(ed.), Artificial Intelligence and Creativity, pp. 269-281. Kluwer Academic Publishers,
Dordrecht..

30

[15] Gero, J. (1994a). Introduction: Creativity and Design. In Dartnall, T. (ed.), Artificial
Intelligence and Creativity, pp. 259-267. Kluwer Academic Publishers, Dordrecht..

[16] Kolodner, J., and Wills, L., (1993). Case-Based Creative Design. In AAAI Spring
Symposium on AI+Creativity, Stanford, CA.

[17] Simina, M. and Kolodner, J. (1997). Creative Design: Reasoning and Understanding.
In Proceedings of the International Conference on Case-Based Reasoning (ICCBR 97),
Providence - Rhode Island, USA.

[18] Sycara, K., and Navinchandra, D., (1991). Influences: A Thematic Abstraction for
Creative Use of Multiple Cases. In Proceedings of the first European Workshop on
Case-Based Reasoning, Springer-Verlag, Washington, DC..

[19] Sycara, K., and Navinchandra, D., (1993). Case Representation and Indexing for
Innovative Design Reuse. In Proceedings of the Workshop of the 13th International
Joint Conference on Artificial Intelligence, Paris, France, Morgan-Kaufmann
Publishers..

[20] Pereira, F. C., Grilo, C., Macedo, L. and Cardoso, A. (1997). Composing Music with
Case-Based Reasoning. In Proceedings of Computational Models of Creative Cognition
(Mind II). Dublin, Ireland.

[21] Arcos, J.L., Mantaras, R. L. and Serra,.X. (1997) SAXEX: A Case-Based Reasoning
system for generating expressive musical performances. Proceedings of the 1997
International Computer Music Conference. Thessaloniki, Greece.

[22] Do, E. and Gross, M. D. (1995) Supporting Creative Architectural Design with Visual
References. In J. Gero et al (ed), 3rd International Conference on Computational Model
of Creative Design (HI '95). Heron Island, Australia.

[23] Ralley, D. (1995). Genetic algorithm as a tool for melodic development. In
International Computer Music Conference. Alberta, Canada.

[24] Biles, J. (1994) A genetic algorithm for generating jazz solos. In International
Computer Music Conference, Aarhus, Denmark.

[25] Jacob, B. L. (1995). Composing with Genetic Algorithms. In International Computer
Music Conference. Alberta, Canada.

[26] Dawkins, R. (1987). The Blind Watchmaker, W.W. Norton & Company, Inc., New
York.

[27] Sims, K. (1991). Artificial Evolution for Computer Graphics. ACM Computer
Graphics, 25, 319--328.

[28] Todd, S. and Latham, W. (1992). Evolutionary Art and Computers, Academic Press,
Winchester, UK.

[29] Rooke, S. (1996). The Evolutionary Art of Steven Rooke,
http://www.azstarnet.com/~srooke/.

[30] Machado, P., Cardoso, A. (1999). NEvAr. In Evolutionary Design by Computers CD-
ROM, Bentley, P. (ed.). Morgan Kaufmann. San Francisco, California, USA.

[31] Baker, E. (1993). Evolving Line Drawings, Harvard University Center for Research in
Computing Technology, Technical Report TR-21-93.

[32] Bentley, P. (Ed.) (1999). Evolutionary Design by Computers, Morgan Kaufman Publ.,
San Francisco, California, USA.

[33] Graf, J. and Banzhaf, W. (1996). Interactive Evolution for Simulated Natural
Evolution. In Artificial Evolution, Alliot, J.-M., Lutton, E., Ronald, E., Schoenauer, M.
and Snyers, D. (eds.), Vol. 1063, Springer Verlag, Nimes, France. pp. 259--272.

An Architecture for Hybrid Creative Reasoning 31

[34] Angeline, P. J. (1996). Evolving Fractal Movies. In Genetic Programming 1996:
Proceedings of the First Annual Conference (Eds, Koza, J. R., Goldberg, D. E., Fogel,
D. B. and Riolo, R. L.) MIT Press, Stanford University, CA, USA, pp. 503--511.

[35] Ventrella, J. (1999). Animated Artificial Life. In Virtual Worlds - Synthetic Universes,
Digital Life, and Complexity, Heudin, J. C. (ed.) New England, Complex Systems
Institute Series on Complexity. Perseus Books, pp. 67-94.

[36] Baluja, S., Pomerlau, D. and Todd, J. (1994). Towards Automated Artificial Evolution
for Computer-Generated Images. Connection Science, 6, 325-354.

[37] Horner, A. Goldberg, D. (1991). Genetic algorithms and computer-assisted
composition. In Genetic Algorithms and Their Applications: Proceedings of the Fourth
International Conference on Genetic Algorithms, Urbana-Champaign, Illinois, USA. pp.
427-441.

[38] McIntyre, R. A. (1994). Bach in a Box: The Evolution of Four-Part Barroque
Harmony Using Genetic Algorithms. In IEEE Conference on Evolutionary
Computation. Orlando, USA.

[39] Spector, L. and Alpern, A. (1994). Criticism, culture, and the automatic generation of
artworks. In Proceedings of Twelfth National Conference on Artificial Intelligence,
AAAI Press/MIT Press, Seattle, Washington, USA, pp. 3-8.

[40] Spector, L. and Alpern, A. (1995). Induction and Recapitulation of Deep Musical
Structure. In Proceedings of International Joint Conference on Artificial Intelligence,
IJCAI'95 Workshop on Music and AI, Montreal, Quebec, Canada.

[41] Papadopoulos, G. and Wiggins, G. (1999). AI Methods for algorithmic composition:
A Survey, a Critical View and Future Prospects. In AISB Symposium on Musical
Creativity, Wiggins, G. (ed.) Edinburgh, UK.

[42] Wiggins, G., Papadoupoulos, G., Phon-Amnuaisuk, S. and Tuson, A. (1999).
Evolutionary Methods for Musical Composition. In International Journal of Computing
Anticipatory Systems.

[43] McCorduck, P. (1991) AARON's Code: Meta-Art, Artificial Intelligence and the Work
of Harold Cohen. W.H. Freedman and Company. New York: Computer Science. USA.

[44] Burton, E. (1997). Representing Representation: Artificial Intelligence and Drawing.
In Mealing, S. (Ed) Computers & Art. Intellect Books. Exeter, UK.

[45] Pachet, F., and Roy, P. (1998). Formulating Constraint Satisfaction Problems on
Whole-Part relations: the Case of Automatic Harmonisation. In Workshop at ECAI’98.
Constraint Techniques for Artistic Applications, Brighton, UK.

[46] Cambouropoulos, E. (1994). Markov Chains as an Aid to Computer Assisted
Composition. Musical Praxis, 1 (1): 41-52.

[47] Cope, D. (1992). Computer Modeling of Musical Intelligence with EMI. Computer
Music Journal.

[48] Stiny, G. (1976). Two exercises in formal composition, Environment and Planning B:
Planning and Design,3 pp. 187-210.

[49] Louis, S., McGraw,G., Wyckoff, R. (1992). CBR assisted explanation of GA results,
Journal of Experimental and Theoretical Artificial Intelligence 5 : 21-37.

[50] Louis, S., Xu, Z. (1996), Genetic algorithms for open shop scheduling. In Proceedings
of ISCA, 11th Conference on Computers and their Applications, pp 99-102.

[51] Louis, S., Johnson, J. (1997). Solving similar problems using genetic algorithms and
case-based memory. In: Back., T. (ed.) Proceedings of the 7th International Conference
on Genetic Algorithms, ICGA'97, East Lansing, Michigan, USA. Morgan Kaufmann, pp
283-290.

32

[52] Louis,S., Zhang, Y. (1999). A sequentially metric for case injected genetic algorithms
applied to TSPs. In Banzhaf et al. (eds.), Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO’99, Orlando, Florida, USA. Morgan Kaufman
Publishers, Inc., California, USA. pp 377-384.

[53] Ramsey, C., Grefensttete, J. (1993). Case-based initialisation of genetic algorithms. In
Forrest, S. (ed.), Proceedings of the Fifth International Conference on Genetic
Algorithms, ICGA’93, Urbana-Champain, Illinois, USA. Morgan Kaufmann, San
Mateo, California. pp 84-91.

[54] Eshelman, L. (1991). The CHC adaptive search algorithm: how to have a safe search
when engaging a non-traditional genetic recombination. In: Rawlings, G. (ed.)
Foundations of Genetic Algorithms (FOGA-1), Morgan Kaufman, San Francisco, USA.
pp. 265-283.

[55] Gomes, P., Bento, C., Gago, P., and Costa, E, (1996). Towards a Case-Based Model
for Creative Processes. In Wahlster, Wolfgang (ed.), Proceedings of the 12th European
Conference on Artificial Intelligence (122-126). West Sussex: John Willey & Sons.

[56] Bento, C., Macedo, L., and Costa, E. (1994). Reasoning with Cases Imperfectly
Described and Explained. In Wess,S.; Althoff, K.-D.; and Richter, M. M., eds., Topics
in Case-Based Reasoning - Selected Papers from the First European Workshop on
Case-Based Reasoning, Kaiserslautern, Springer Verlag, 1994.

[57] Bento, C., and Costa, E. (1994). A Similarity Metric for Retrieval of Cases Imperfectly
Explained. In Wess,S.; Althoff, K.-D.; and Richter, M. M., eds., Topics in Case-Based
Reasoning - Selected Papers from the First European Workshop on Case-Based
Reasoning, Kaiserslautern, Springer Verlag, 1994.

[58] Goel, A., (1992). Representation of Design Functions in Experience-Based Design. In
Brown, D., M. Waldron, & H. Yoshikawa (Eds.), Intelligent Computer Aided Design,
pp. 283-308. Elsevier Science Publishers, Amsterdam..

[59] Stroulia, E., Shankar, M., Goel, A., and Penberthy, L., (1992). A Model-Based
Approach to Blame Assignment in Design. In Proceedings of the 2nd International
Conference on AI in Design, pp. 519-537, Kluwer, Dordrecht..

[60] Bylander, T., and Chandrasekaran, B., (1985). Understanding Behaviour Using
Consolidation. In Proceedings of the Ninth International Joint Conference on Artificial
Intelligence (450-454), Los Angeles, CA, USA.. Morgan Kaufman.

[61] Smyth, B., and Keane, M., (1995). Experiments on Adaptation-Guided Retrieval in
Case-Based Design. In Veloso, Manuela, & Agnar Aamodt (Eds), Topics in Case-Based
Reasoning Proceedings of the International Conference on Case-Based Reasoning
(313-324). Berlin: Springer Verlag.

[62] Macedo, L., Pereira, F. C., Grilo, C. and Cardoso, A. (1998). A Computational Model
for Creative Planning. In: Schmid U, Krems JF, Wysotzki F (Eds.) Mind Modelling: A
Cognitive Science Approach to Reasoning, Learning and Discovery pp.193-208. Pabst
Science Publishers. Lengerich, Germany.

[63] Macedo, L., Pereira, F. C., Grilo, C. and Cardoso, A. (1997). Experimental Study of a
Similarity Metric for Retrieving Pieces from Structured Plan Cases: its Role in the
Originality of Plan Case Solutions In Proceedings of the 2nd International Conference
on Case-Based Reasoning, ICCBR-97, Brown University, Providence, Rhode Island
USA, Lecture Notes in Artificial Intelligence, LNAI-1266, Springer-Verlag.

[64] Mansfield, R., and Busse, T. (1981). The psychology of creativity and discovery.
Chicago: Nelson-Hall.

[65] Poincaré, H. (1913). The foundations of science. Lancaster, PA: Science Press.

An Architecture for Hybrid Creative Reasoning 33

[66] Rossman, J. (1931). The psychology of the inventor: A study of the patentee.
Washington, DC: Inventors Publishing Co.

[67] Macedo, L., and Cardoso, A. (1999). Labelled Adjacency Matrices for Labelled,
Directed Multigraphs: Their Algebra and Hamming Distance, In Procs. of the 2nd. IAPR-
TC15 Workshop on Graph-based Representations, GbR'99, Castel of Haindorf, Austria,.

[68] Guilford, J. P. (1967). The Nature of Human Intelligence. McGraw-Hill, New York.
[69] Veale, T. and Keane, M. T. (1994). Metaphor and Memory: Symbolic and

Connectionist. Issues in Metaphor Comprehension. In Proceedings of the European
Conference on Artificial Intelligence Workshop on Neural and Symbolic Integration,
Amsterdam.

[70] Indurkhya, B. (1992). Metaphor and Cognition, Kluwer Academic Publishers,
Dordrecht, The Netherlands.

[71] Pereira, F. C. and Cardoso, A. (1999). Dr. Divago: searching for new ideas in a multi-
domain environment Proceedings of the 8th Cognitive Science of Natural Language
Processing (CSNLP-8), Ireland.

