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Abstract 

Creativity is one of the most remarkable characteristics of the human mind. It is 
thus natural that Artificial Intelligence’s research groups have been working 
towards the study and proposal of adequate computational models to creativity. 
Artificial creative systems are potentially effective in a wide range of artistic, 
architectural and engineering domains where detailed problem specification is 
virtually impossible and, therefore, conventional problem solving is unlikely to 
produce useful solutions. Moreover their study may contribute to the overall 
understanding of the mechanisms behind human creativity. 

In this text, we propose a computational hybrid architecture for creative 
reasoning aimed at empowering cross contributions from Case-Based Reasoning 
(CBR) and Evolutionary Computation (EC). The first will provide us a long-term 
memory, while the later will complement with its adaptive ability. The background 
knowledge provided by the memory mechanism can be exploited to solve 
problems inside the same domain or problems that imply inter-domain transfer of 
expertise. 

The architecture is the result of a synthesis work motivated by the observation 
that the strong similarities between the computational mechanisms used in systems 
developed so far could be explored. Moreover, we also propose that those 
mechanisms may be supported by a common knowledge representation formalism, 
which appears to be adequate to a considerable range of domains. Furthermore, we 
consider that this architecture may be explored as a unifying model for the creative 
process, contributing to the deepening of the theoretical foundations of the area. 
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1 Introduction 

Creativity is consensually viewed as one of the most remarkable characteristics of 
the human mind. Its study has been a challenge for many scientists and 
researchers, specially for those of areas such as Cognitive Science and Psychology. 
During the last years, a growing number of Artificial Intelligence groups have been 
working towards the study and proposal of adequate computational models to 
creativity. As a result of this endeavor, a new AI area is emerging, usually named 
Creative Reasoning (CR).  Artificial creative systems are potentially effective in a 
wide range of artistic, architectural and engineering domains, where detailed 
problem specification is virtually impossible and, therefore, conventional problem 
solving is unlikely to produce useful solutions. Moreover their study may 
contribute to the overall understanding of the mechanisms behind human 
creativity. 

Several explanation models, originated in the Psychology and Cognitive 
Science fields, have been proposed for the creative process, like the ones 
suggested by Dewey [1], Guilford [2], and Wallas [3]. Generally, they split the 
process into steps, which may be summarized (with more or less differences) into 
the following ones: problem formulation and knowledge assimilation; conscious or 
unconscious search for a solution, proposal of a solution, and verification of the 
proposed solution. These models may constitute an important source of inspiration 
to computational models of creativity. Also relevant are the studies of De Bono 
[4]around the concepts of lateral and vertical thinking and their relation with 
creativity. 

We may also look for other sources of inspiration besides human creativity. 
When we look to nature we see that all living species struggle permanently for life. 
The Neo-Darwinist theory, revising Darwin first ideas at the light of modern 
genetics, give us a scientific framework that explains how life forms survive by 
adapting themselves to environmental changes. In the center of this process is a 
mechanism that selects the fittest individuals and recombines their genetic 
material. Putting together “good” parts of different individuals can give rise to a 
new and better one. This is clearly a way of producing innovative solutions [5]. 
But, is nature capable of producing creative solutions? This is a more difficult 
question to answer. In fact the biological adaptive processes have a limitation: they 
do not have a long-term memory (although we can view multiploidy as a limited 
memory mechanism), and memory is an important part of the creative process. 
Thus, if we want to have a computational model of creativity, inspired in nature, 
we must introduce a memory element. This points out to hybrid solutions. 

In the past some creative systems based either in Case Based Reasoning (CBR) 
or Evolutionary Computation (EC) techniques were proposed. CBR approaches 
can explore previous knowledge and have good explanatory capabilities. 
Nevertheless, they have difficulties exploring large search spaces. On the other 
hand, EC approaches are efficient in dealing with complex search spaces and 
explore parallelism in a natural way. However, they lack long-term memory and 
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the incorporation of problem-specific knowledge and the interpretation of results is 
problematic. 

In this text, we propose a computational hybrid architecture for creative 
reasoning aimed at empowering cross contributions from CBR and EC. The first 
will provide us a long-term memory, while the later will complement with its 
adaptative ability. The background knowledge provided by the memory 
mechanism can be exploited to solve problems inside the same domain or 
problems that imply inter-domain transfer of expertise. 

The architecture is the result of a synthesis work motivated by the observation 
that the strong similarities between the computational mechanisms used in systems 
developed so far could be explored. Moreover, we also propose that those 
mechanisms may be supported by a common knowledge representation formalism 
which appears to be adequate to a considerable range of domains. Furthermore, we 
consider that this architecture may be explored as a unifying model for the creative 
process, contributing to the deepening of the theoretical foundations of the area. 

The remaining of this document is organized as follows. In Section 2 we give a 
synthetical presentation of the background concepts of CBR and EC. Those who 
are familiar with these two techniques may safely skip this section. In Section 3 we 
present a state of the art on creative systems, as well as on hybrid systems which 
resort on CBR and EC. In Section 4 we give an overview of some systems 
developed by our team using CBR and EC approaches. These systems motivate the 
presentation, in Section 5, of a common representation formalism and a unifying 
hybrid architecture. Section 6 is devoted to the presentation of an example which 
illustrates the application of the proposed architecture to creative reasoning. In 
Section 7 we present some improvements to the architecture which we are 
currently exploring. In Section 8 we draw some conclusions. 

2 Background 

This Section is intended to the readers who are not familiarized with CBR and/or 
EC. We will briefly present the basic concepts behind CBR and EC, focusing on 
the main steps of their basic cycles and on the main issues around representation. 

2.1 Case Based Reasoning 

Case-based reasoning (CBR) uses past experience to solve new problems [6][7]. In 
a CBR system, experience is stored by way of cases, which form a case library. 
Cases are episodic chunks of knowledge that are used in the resolution of a new 
situation. The problem solving process in CBR is based on the premise that 
identical problems have identical solutions. When a CBR system has a new 
problem to solve, it retrieves cases with similar problem descriptions. If the 
selected cases are different from the target problem, they must be modified in 
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order to fit it. This modification of a retrieved case is called adaptation. Finally, 
the new case created by adaptation is evaluated and may be stored in the case 
base. The reasoning steps are illustrated in Figure 1, where the iterative nature of 
the process is outlined. 

Case representation is crucial in CBR, since the case representation delimits the 
CBR steps. For example, cases can only be efficiently retrieved if the important 
features of the problem description are represented. Cases can be represented by 
attribute/value pairs, hierarchies of concepts, objects (object oriented style), 
textual description, causal models, or combination of them.  

In the case retrieval phase, the CBR systems must decide which cases are the 
best candidates to solve the target problem. There are several ways of doing it, but 
the most used ones are: using an indexing scheme, where there is a set of indexes 
associated to each case that are used to retrieve the case; using a metric function 
like K-nearest neighbor to assess the similarity of the target problem and the case 
problem’s description. Both have their advantages and disadvantages. 

Case adaptation is one of the most unexplored phases of CBR. This may be 
explained by the complex and domain dependent nature of the adaptation process. 
In general terms, during adaptation, the CBR system must first identify the 
differences between the target problem and the cases’ problem’s description, and 
then apply modification operators to change the case solution. These operators can 
be production rules, formulas, heuristics, or specific procedures. 

The evaluation of the solutions generated by adaptation is important to provide 
feedback to the system. In this phase, the new solution is evaluated and, 
accordingly to the evaluation’s result, it is stored in the case library and presented 
to the user, or it is rejected, which leads the system back to the adaptation phase. 
The evaluation can be done automatically or by a human. 

The case learning step introduces flexibility and also the capability to adapt to 
new situations. In this phase, the feedback gathered from the evaluation phase can 
be stored, in order to be used again in similar situations. Several things can be 
learned, and the new case created to solve the target problem is the more basic and 
obvious of them. Other things can be learned, for instance, new adaptation 
operators, cases where the solution failed, and so on. 

In summary, CBR provides a fast reasoning mechanism, specially suited for 
domains where there is no causal model, can be used for evaluation where no 
algorithmic methods exist, and can avoid previous failure situations. Cases are also 
useful for interpretation of ill-defined concepts. One of the main drawbacks of 
CBR is that it is difficult to make the right index selection. Also, the solution space 
is focused around the case points, thus constraining the possible solutions. 
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Figure 1. The CBR cycle. 

2.2 Evolutionary Computation 

In recent years, a new paradigm for problem solving, called Evolutionary 
Computation (EC), has emerged. EC can be viewed as a set of stochastic search 
procedures inspired by the biological principles of natural selection and genetics 
[8]. Historically, these sets can be divided into four families, namely, Evolution 
Strategies [9][10], Evolutionary Programming [11], Genetic Algorithms [12]and 
Genetic Programming [13]. In spite of their differences they are all instances of the 
following general algorithm: 
 

Procedure EC 
  t=0; 
  Intialize P(t); 
  Evaluate P(t); 
  While stoping_criterium_false  do 
 t = t+1; 
 P’(t) = select_from P(t-1); 
 P’’(t) = use_op_modification P’(t); 
 Evaluate P’’(t); 
 P(t) =  merge P’’(t) , P(t-1) 
End_do 
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We start with a set of candidate solutions, called a population, usually defined 
randomly. Each element of that initial population, called an individual, is then 
evaluated using a fitness function that gives a measure of the quality of that 
element. Each individual is in fact an aggregate of smaller elements or units, which 
are called genes. Each gene can have different values or alleles. The algorithm 
enters then a cycle in order to generate a new population. We start by 
probabilistically selecting the fittest individuals. Then they undergo a modification 
process, using genetic inspired operators like crossover or mutation that will 
eventually alter the alleles of some genes. Finally, the old and new populations are 
combined and the result becomes the next generation that will in turn be evaluated. 
The cycle stops when a certain condition is achieved (for instance, a pre-defined 
number of generations). The selection mechanism introduces the possibility of 
exploiting promising parts of the search space. The crossover operator works by 
exchanging genetic material between two individuals, while the mutation operator 
modifies the alleles of some individuals. That way they promote the exploration of 
different areas of the search space. A good balance between exploitation and 
exploration is essential for the success of the EC algorithm. Another important 
aspect is the question about what is manipulated. The algorithm just described 
work, generally, with a low-level representation of each individual called its 
genotype. Nevertheless, in complex problems, the fitness function acts upon a 
high-level representation of an individual, its phenotype. It is thus necessary to 
have decoders from genotypes to phenotypes. 

It is outside the scope of this text to refer all the variants of an EC algorithm. 
The interested reader can have a deeper idea about the many EC algorithms that 
were proposed and their practical applications in Back et al. [8]. 

The success of EC algorithms is linked to their ability to solve difficult 
problems. Problems where the search space is large, multi-modal and when 
domain knowledge is scarce and/or difficult to obtain. When this is the case EC 
proves to be more efficient than traditional algorithms.  

3 Creative Systems and Hybrid Systems: State of the 
Art 

There are multiple approaches to Creative Reasoning, and a diversity of 
applications has been explored by researchers of the area. In this Section we will 
first give an overview of the present state of the art in computational creativity, 
focusing on the paradigms used, the domains in which they were applied and some 
successful experiences.  

Afterwards, we will also present an overview of works that combine CBR and 
EC in a hybrid way. 
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3.1 Creative Systems 

Several AI techniques have already been applied to tasks that are usually 
considered to require creativity, such as Design, Music Composition, Image 
Generation, Scientific Discovery, Architecture, and others. One of the paradigms 
that has been used with this purpose is Case-Based Reasoning. It has been 
thoroughly applied, for example, in Creative Design, which is generally defined as 
a cognitive task where some knowledge for the mapping process between the 
problem and solution spaces are missing [14][15]. The solutions generated in 
creative design define new classes of artifacts, thus expanding the space of known 
designs. In this exploration process, designers often use old solutions to solve new 
problems – which suggests the suitability of CBR to this problem. In creative 
design, the old solutions are changed in novel ways or used in novel situations. 
Several researchers have used the CBR paradigm as a framework for building 
systems to tackle this task. Some very interesting CBR-based works in this area are 
those of: Kolodner and Wills [16], which apply case indexing accordingly to 
various perspectives, in order to allow the search of the case memory for 
remindings that might be represented in a different way in the light of the current 
problem; Simina and Kolodner [17], which propose a computational model that 
accounts for opportunistic behavior, which is considered to be characteristic of 
creative behavior;  Sycara and Navinchandra [18][19], which use a thematic 
abstraction hierarchy of influences as a retrieval method. In this framework, case 
organization provides the main mechanism for cross-contextual reminding, which 
is very important in creative design. They also stress the importance of 
composition of multiple cases and case parts. 

Still in the CBR area, we can find works in Music Composition, such as Pereira 
et al [20], presented later in this chapter, which applies musical analysis structures 
to build new musical pieces. Each of these structures is considered a 
decomposable case. The work of Arcos et al [21] on expressive performance based 
on CBR is also an interesting one. Its cases consist on information extracted from 
spectral analysis of performances and the scores themselves. From this set of 
cases, the system infers a set of possible expressive transformations for a given 
new phrase. 

Case Based Reasoning has also been applied in Architecture [22], and we 
believe it is a promising paradigm to other kinds of creativity demanding tasks. 
As nature by itself is known to be creative, it is not surprising that Evolutionary 
Computation paradigms have also been used as a mean to implement 
computational creativity. The difficulty of creating an evaluation function in 
domains such as image or music generation has led, frequently, to the use of 
Interactive Evolution (IE). In these systems the user evaluates the individuals, thus 
guiding evolution. IE has great potential as the countless already developed 
applications show. In the field of music, it has been applied in the evolution of 
rhythmic patterns and melodies [23]; in jazz improvisations [24]; in composition 
systems [25]. The works of Dawkins [26], which uses IE to evolve artificial 
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creatures based on the aesthetic preferences of the user, Sims [27], Todd [28], 
Rooke [29] and Machado et al [30], which resort to IE to evolve images, and 
Baker [31], where IE is used to evolve human faces, are some examples of the 
application of IE in the field of image generation. IE has also been successfully 
applied in the fields of design [32][33] and animation [27] [34] [35]. 

As far as we know, in the field of image generation there has been only one 
attempt to automate fitness assignment, the work of Baluja et al [36]. However, the 
results produced by this system, which uses neural networks to evaluate images, 
were disappointing.  

There have been several attempts to automate fitness assignment in the musical 
field. Some examples of this type of work are: Horner et al [37], which use GAs to 
evolve thematic connections between melodies; McIntyre [38] which uses GAs to 
generate musical harmonization; Spector [39][40] which resort to Genetic 
Programming to evolve programs that generate jazz melodies from an input jazz 
melody; Papadopoulos et al [41] use GAs to evolve jazz melodies based on a 
progression of chords. However, and in spite of the numerous applications, 
Wiggins et al [42], which has studied the performance of this type of systems, 
defends that these approaches are not ideal for the simulation of human musical 
thought. 

CBR and EC are not the only approaches to the resolution of tasks demanding 
creativity. Other techniques currently used are Knowledge Based Systems, as in  
Harold Cohen’s Aaron [43] and Ed Burton’s ROSE [44], in Visual Arts, and the 
work of Pachet and Roy [45] in Music; Mathematical Models (e.g., the Markov 
Chains of Cambouropoulos [46] to assist on music composition); Grammars (e.g., 
the works of Cope [47] in Music, and of Stiny [48] in architecture ).  

3.2 Hybrid Systems Based on CBR and EC 

There are a few systems that try to combine CBR and EC. Most of the work was 
done by Sushil Louis and his co-workers [49][50][51][52], which built the CIGAR 
system, and by Ramsey and Grefensttete [53]. The main idea of CIGAR was to use 
a base of cases to initialize the population, and then let the EC algorithm do its 
typical adaptation work. The first cases are former solutions of old problems 
obtained by running the GA alone (see Figure 2). 
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Figure 2. The CIGAR system 

Louis used his system to solve a similar problem or a set of similar problems. 
He also studied how many cases to inject into the population, coming from the 
base of cases, and which ones should be chosen. Finally, he also studied the 
possibility of injecting cases not only into the initial population but also in 
intermediates ones. Some of the problem domains used to test these ideas were 
combinational circuit design, open shop scheduling and re-scheduling and function 
optimization. The results presented showed that with a judicious choice the 
combination CBR and EC gave better results. Other authors had also used the idea 
of injecting new, random generated, individuals into a population at certain times. 
For instance, Eshelman [54], in his algorithm named CHC, replaces the mutation 
operator, used in the standard genetic algorithm to insure population diversity, by a 
restarting process applied to the population. Once again, the definition of when to 
do it, how many new individuals should be generated randomly and which ones 
should be kept from the previous generation is an important issue and is most 
relevant when we deal with creative systems. 

As far as we know, nobody has tried to use a hybrid system to produce creative 
solutions. Nevertheless, Goldberg [5] states that there are forms of adaptation 
which go beyond innovation. He suggests two ways about how this can be 
achieved: remapping the primitives, that is, changing the representation; and 
performing metaphorical transfer, that is, the transfer of a solution from a known 
problem domain to another. 

4 Creative Reasoning 

During the last years, the authors have centered most of their research work on the 
development of CBR-based and EC-based approaches to Creative Reasoning. In 
this Section we will present with some detail the main applications developed so 
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far. Some common characteristics of the works, particularly in which concerns to 
the adoption of a tree-like knowledge representation, will constitute the basis for 
the hybrid architecture that we will propose in subsequent Sections. 

4.1 Creative Reasoning with CBR 

The capability of reminding previous experiences to draw analogies with the 
current situation has made case-based reasoning a good framework to support 
creative design [16][55]. In the next subsections we present several approaches to 
creative reasoning with CBR which we have developed so far. There are three 
main systems: IM-RECIDE, a generic creative reasoning shell; CREATOR and 
CREATOR II, creative design systems in the area of digital circuit design; and 
SICOM/INSPIRER, a system that uses CBR for creating new musical pieces. 

4.1.1 IM-RECIDE 

IM-RECIDE [55] is a generic creative reasoning shell that uses CBR as the main 
reasoning mechanism. Its reasoning cycle comprises several steps: problem 
definition, space initialization, problem solving, verification and evaluation. The 
first step comprises problem specification, where the user states a new problem in 
terms of goals and constraints. In the initialization phase the system clusters cases 
in different sets, each one called a reasoning space. These spaces allow a gradual 
exploration of the case library enabling the system to generate new designs. In the 
problem-solving phase, reasoning operators are applied to old solutions for 
generation of new ones. If no solution is generated within a specific space, the 
system switches to the next space from the list that was created during the 
initialization phase. When a solution cannot be generated, and there are no more 
spaces to search for, the user is asked to give a solution for the problem. After a 
solution has been generated it has to be verified and evaluated. In a first step, it is 
internally validated by failure cases (verification). Failure cases represent 
constraints in the generation of new solutions. If a failure case is triggered by the 
new solution, then the solution is rejected. If a solution passes the internal 
validation, the user is asked to accept or reject the new case. If she/he rejects the 
new solution, then the user is asked to explain this rejection in terms of failure 
cases. After this, the process returns to the problem-solving step. This last phase is 
called evaluation because the user has to make a decision about the originality and 
validity of the case.  

Case representation is very important for a CBR system, because it determines 
the capabilities of the system. Within IM-RECIDE, a case is represented by a 
triple <P, S, R> with P and S, respectively, a set of facts representing the problem 
and solution descriptions, and R a set of rules representing a causal justification 
(for a more detailed description see [56]). A fact is composed by a function name 
(functor), and n arguments, with n equal or greater than zero. The justification is a 
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causal tree, linking problem facts to solution facts through rules. The case library 
also comprises failure cases representing design constraints.  

For case retrieval, we consider four spaces of knowledge: Space I, Space II, 
Space III and Space IV. Each space comprises the cases possessing a set of 
common properties concerning the target problem. Each space forms a cluster in 
the case library. The definition of each space is done in terms of the characteristics 
that the cases within this space share with the target problem. Creativity can be 
seen as the result of reasoning on spaces of cases increasingly further away from 
the target problem. As the system goes from space I to space IV, it drifts away 
from the problem, trying to find nontrivial solutions. The retrieval process starts 
with the cases in Space I, going from space to space, until it reaches Space IV. 

Space I comprises the cases for which all functor/arguments pairs belonging to 
the problem description, match the new problem. Space I is considered the space 
normally associated with the current problem. Most of the current CBR systems 
use cases from this space. Cases for which all functors describing the problem 
component match the new problem, belong to Space II. This space is related with 
problems similar to the target problem. This space is often called as the innovation 
space, where parametric adaptations are usually done, sometimes resulting in using 
a novel value for a well-known functor. Space III contains the cases which have 
explanation rules with all functor/arguments pairs matching the target problem. 
Space III is defined using causal knowledge, which makes similarities between 
cases and the target problem more abstract, but also more important. This space is 
usually associated with creative solutions, but also with bizarre ones. 

Space IV gathers all cases that contain at least one explanation rule with at least 
one functor/arguments pair matching the target problem. Space IV is like a 
speculation space where cases have remote similarities with the target problem, 
because constraints were relaxed. This relaxation allows the system to explore 
cases considered distant from the target problem. Once again, the knowledge used 
to do this is the causal knowledge comprised in the explanations. 

We now describe the adaptation mechanisms used in IM-RECIDE, called 
adaptation operators. These operators modify cases in the current space in order to 
solve the new problem. The cases that are used for generation of the new case are 
called the source cases. The selection of the cases for adaptation is performed 
through a metric [57]. These cases are selected from the set of cases in the current 
working space. 

Each space possesses a set of predefined adaptation operators. These operators 
are used accordingly to the type of cases that the space comprises. The operators in 
Space IV are more powerful than the operators in Space I. This is an obvious 
situation, because cases in Space IV have less similarities with the problem. In 
order to reach a valid solution, more difficult adaptation operations must be done. 
Associated with the operator capabilities is the complexity of the computational 
process originated by each operator, the cognitive risks involved, and the 
probability of generating a more creative solution. 
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A solution of one case belonging to Space I does not need to be modified in 
order to become a solution to the target problem. Therefore, a metric is used for 
selection of the best case, and its solution is the one for the target problem. Cases 
in Space II have only some different values regarding the problem description. In 
order to meet the target problem requirements, it is necessary to modify the old 
case solution. This solution is derived from the old case by the propagation of the 
differences in the old problem to the old solution. The causal knowledge is used to 
guide the propagation process. The selected case is chosen using a metric function, 
which measures the similarity of cases against the target problem. Space III 
generates new solutions by splitting and merging of case pieces. IM-RECIDE 
starts selecting the most similar case from the set of episodes comprising Space III. 
Then, it splits the case into pieces selecting the pieces that match part of the target 
problem. These pieces are then merged to form a new case. If the problem 
description in the new case has some missing parts in regard to the target problem, 
other cases are selected to contribute with case pieces to complete it. Pieces from 
these cases that are relevant for the new case are merged with it. In space IV, there 
are several adaptation operators, and they can be applied in sequence. Splitting and 
merging is one of the operators within this set. The other operators are elaboration, 
reformulation, substitution, and generalization. Elaboration comprises relaxing 
and/or strengthening of constraints described in a case problem, in order to match 
the target problem description. The case solution is suggested as the new solution. 
Reformulation involves changing the new problem description according to 
constraints imposed by failure cases. Substitution comprises replacing a 
functor/arguments pair in the past case in order to make it similar to the new 
problem. The solution that results from this substitution is given as the one for the 
new problem. Generalization involves considering values initially not considered 
in the problem description of a past case, and assuming the case solution remains 
unchanged.  

After a solution is created, it is verified by the failure cases. If the solution 
matches one failure case, then it is rejected. Only solutions that the system assumes 
to be correct, by its current knowledge, are shown to the user. 

4.1.2 CREATOR & CREATOR II 

CREATOR is a case-based creative design system in the domain of digital circuit 
design. CREATOR comprises four different modules: reasoning, knowledge base, 
evaluation and meta-control. The system was developed having the SBF models 
[58][59] as the case representation formalism. The reasoning module is 
responsible for problem elaboration, retrieval of relevant cases and adaptation of 
cases. The knowledge base comprises the case base, general domain knowledge 
and memory structure. Hierarchies of functions, structures and substances are used 
as general domain knowledge. This is important for several purposes, one of which 
is the construction of the memory structure. The memory structure has two main 
goals: to index cases and to allow space exploration. The evaluation module 
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verifies and validates the generated solutions, while the meta-control module 
controls and co-ordinates all the other modules. The evaluation module and 
adaptation processes are being implemented in CREATOR II, which is the 
successor of CREATOR.  

Within our framework, design cases are represented in the form of SBF models. 
These models are based on the component-substance ontology developed by 
Bylander and Chandrasekaran [60]. A case comprises three parts: (1) problem 
specification; (2) explanation; (3) design solution. The explanation is in the form 
of a causal chain, representing the design behavior. The case solution describes the 
design structures that accomplish the functionalities described in the target 
problem. So the problem specifications are related to the design function, the 
explanation to the design behavior, and the solution to the design structure. 

The problem specification comprises a set of high level functionalities (HLFs) 
and a set of functional specifications (FSs) which must be held by the design. 
HLFs are abstract functionalities, used to help the user in specifying the design 
problem. While a HLF is a function that can be decomposed into several 
subfunctions, an FS is undecomposable. An FS is defined in detail in accordance 
to input and output substances. A design problem is represented by a tree of 
functionalities, where leaves are FSs and the high levels in the tree represent 
HLFs. Each leaf in the tree represents an FS in a schema comprising the initial 
behavior state, the final behavior state, behavioral constraints, external stimulus to 
the design, and structural constraints. 

The design solution is in the form of a hierarchy of device structures. Each 
structure can be viewed as a set of device structures where substances can flow 
through. The structure schema comprises information such as: structure class, sub-
structures, super structures, relations, properties and functions. Figure 3 shows the 
high level representation of an Arithmetic and Logic Unit (ALU), where each node 
in the tree represents a structure. Each of these structures has a corresponding 
structure schema. 

ALU

Arithmetic
Functions

Logic
Functions

Add Subtract And Xor Not Or

 
Figure 3 – A representation for an Arithmetic and Logic Unit (ALU) in CREATOR. 
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A case explanation describes the causal behavior of the design in terms of 
directed graphs (DGs). The nodes of a DG represent behavioral states and the 
edges represent state transitions. One or more substance schemas can compose a 
behavioral state. A substance schema characterizes the properties and the property 
values of a substance. A state transition represents the conditions under which the 
transition between behavioral states occurs.  

The memory structure that supports case retrieval comprises two substructures: 
(1) a hierarchy of HLFs and FSs, and (2) a graph, whose nodes represent cases, 
and whose links describe functional differences between cases. The hierarchy of 
functions is used as an index structure for selection of the starting cases. The 
starting cases have at least one FSs in common with the target problem. These 
cases are then used as starting points for exploration of the case graph. The leaves 
of the hierarchy are nodes that describe a HLF instance. These nodes are called 
List of Functions (LF) and they comprise a set of HLFs and/or FSs. These nodes 
are extracted from cases and index the case they belong, thus connecting the 
hierarchy of functions to the graph of cases. Two cases can be connected by 
difference links, which represent the differences between the problem description 
of the cases linked. A difference link is created only when the cases it connects 
have at least one FS in common. A difference link connecting two cases comprises 
three parts: 
• the set of FSs that belong to the first case but don’t belong to the second one; 
• the set of FSs that belong to the second case but don’t belong to the first one; 
• the set of FSs common to both cases. 

The reminding of useful experiences in a case-based system is a critical issue. 
The accuracy of case retrieval in case-based creative reasoning is important, but 
even more important than that is the capability to explore several solutions. Within 
our framework, accuracy is achieved by the use of functional indexes, and space 
exploration takes place through the use of difference links in the graph of cases. 
The FSs defined in the target problem are used as probes to retrieve the set of 
starting cases. Then, a best starting case is selected as a starting point in the search 
space. The search space is represented by the graph of cases. Exploration is 
performed using the difference links necessary to go from one case to another. 

An important feature of the exploration algorithm is the selection of cases 
accordingly to the adaptation strategy that will be used for generation of the new 
solution. The retrieval algorithm explores the case graph, searching for cases with 
features suitable for the adaptation method that will be applied. This makes 
retrieval an adaptation-guided process as defined by Smyth and Keane [61], 
although there are some differences to their process. Two of the adaptation 
strategies considered within our framework are thematic abstraction and 
composition. Thematic abstraction is an adaptation strategy that generates a new 
solution from a single case. It consists on the transfer of knowledge from a case to 
the target problem, in order to create a new design. The composition strategy deals 
with one or multiple cases. It splits and/or merges case pieces generating new 
solutions - it is a multi-case strategy. 
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4.1.3 SICOM/INSPIRER 

Following some of the features from IM-RECIDE, we designed INSPIRER [62] 
for creative problem solving in domains in which knowledge can be represented by 
hierarchically structured cases. This framework was deeply tested in the Music 
domain, and its implementation, SICOM [20] generated some pieces of music 
from a small case-base with three compositions from a XVIIth century Portuguese 
baroque composer, Carlos Seixas. In SICOM, each case consists on a highly 
detailed analysis with several layers of abstraction, in which a piece of music is 
progressively subdivided according to thematic groupings (following harmonic, 
melodic and rhythmic principles from Music Theory). The result is a strictly 
hierarchical structure complemented by causal links that establish non-hierarchical 
relations (see Figure 4). This kind of structured organization is common within 
music and some other artistic domains like architecture, literature and visual arts.  

Generally, each case in SICOM is a complete piece of music, represented by a 
set of interrelated nodes (case-pieces) extracted from music analysis. 

 

Music

Part2 PartNPart1

Section2 Section1Section1
. . . . .
. . .

Music structure

Section2 Section2Section1

Global

Parts

Sections
Phrases
Sub-phrases
Cells
Notes  

Figure 4 – Representation of a musical piece in SICOM 

The generation of a composition consists on the creation of a new structure 
applying case-pieces from the case-base. This generation is taken in a top-to-
bottom and left-to-right sequence, as illustrated in Figure 5 (i.e., it starts by 
choosing the more abstract and temporally preceding nodes).  
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Figure 5 – Sequence of generation of a musical piece in SICOM 

One key point of systems such as INSPIRER/SICOM is that of the similarity 
metric. It is according to this measurement that it selects which nodes to apply or 
to avoid in a new composition. Unfortunately (or fortunately), there are no 
formulas to evaluate a good solution in the Musical domain. Moreover, we don’t 
have a clear definition of what is or is not a good choice for any specific situation 
during the composition of a new music. We do have the clear notion that context 
and structure can be determinant to the successfulness of a choice and we have a 
set of composition rules to help on evaluation and adaptation. The similarity metric 
that we apply in SICOM [63] takes two main aspects of a node into account: its 
intrinsic properties (e.g., its internal attributes, like the melodic contour it defines) 
and its context (e.g., the causal links connected to it, the attributes of its parents, its 
position in the whole structure). After applying this similarity metric, SICOM can 
use one of several orderings to select the node (e.g., choosing the most similar; the 
least similar; avoid the first 20% of the candidate list, etc.). 

The output compositions of the project SICOM/INSPIRER, although being not 
comparable to those of a professional composer, are nevertheless very interesting, 
specially taking into account that it has a library with only three cases. A particular 
example of its performance is the introductory part of its compositions. Each of the 
three Carlos Seixas’ pieces had a similar introductory part, but SICOM was able to 
generate several new structures with different and correct (according to the style) 
solutions. 

4.2 Creative Reasoning with Genetic Programming 

As stated before EC has great potential for creative reasoning. In this section we 
will make a brief yet comprehensive description of NEvAr (Neuro Evolutionary 
Art).  

NEvAr is an evolutionary art tool, inspired in the works of Sims [27] and 
Dawkins [26], that allows the evolution of populations of images from an initial 
one using Iterative Evolution. The presentation of the underlying model will 
follow. We will finish this section by showing some experimental results and 
drawing some overall remarks. 

4.2.1 Representation 

Like in most GP applications, in NEvAr the individuals are represented by trees. 
Thus, the genotype of an individual is a symbolic expression, which can be 
represented by a tree. 

The trees are constructed from a lexicon of functions and terminals. The 
internal nodes are functions and the leaves terminals. In NevAr, we use a function 
set composed mainly by simple functions such as arithmetic, trigonometric and 
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logic operations. The terminal set is composed by the variables x and y, and by 
constants which can be scalar values or 3d-vectors1. 

The interpretation of a genotype results on a phenotype, which in NEvAr is an 
image. The easiest way to explain how this is achieved is through an example. Lets 
consider the function f(x,y)=(x+y)/2 with x, y ∈ [-1,1]. This function can be 
represented by the tree presented in Figure 6. 

/

+

x

2

y
 

Figure 6. Representation of f(x,y)=(x+y)/2 in the form of a tree. 

How can we visualize this function? One hypothesis is making a tridimensional 
graphic such as the one presented in Figure 4a. Another option would be to view 
this graphic from the top and indicate the value of the function through a color. 
The value -1 could correspond to 0% luminance (black) and 1 to 100% luminance 
(white), the values in between –1 and 1 would be represented by intermediate 
luminance values. This approach yields an image similar to the one presented in 
Figure 7b. In Figure 8 we present some examples expressions and the images 
generated by them. 
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Figure 7. a) Tridimensional graphic of f(x,y)=(x+y)/2. b) A color graphic of the same 
function. 

                                                           
1
 The three dimensional vectors are necessary to produce color images: each dimension of 

the vector corresponds to a color channel (Red, Green and Blue). 
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Figure 8. Some simple functions and the corresponding images. 

4.2.2 Genetic Operators 

In NEvAr we use two kinds of genetic operators: recombination and mutation. As 
recombination operator we use the “standard” GP crossover operator [13] which 
exchanges sub-trees between individuals (see Figure 9): given two individuals A 
and B, we select randomly two crossover points (one node of A and one of B) PA 
and PB; these nodes are the roots of two sub-trees; then we swap the sub-trees, 
thus obtaining two new individuals A’ and B’. 
A B A' B'×
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x

√

√

x 10

PB
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yx
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PA ×

+ √

x 10+
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x4

+ x

√

 
Figure 9. Example of crossover between the individuals A and B. 

We use five mutation operators that are similar to the ones used in [27]: 
− Sub-tree swap – randomly select two mutation points and exchange the 

corresponding sub-trees. 
− Sub-tree replacement – randomly select a mutation point and replace de 

corresponding sub-tree by a randomly created one. 
− Node insertion – randomly select an insertion point for a new, randomly 

chosen, node. If necessary, create the required arguments randomly. 
− Node deletion – the dual of node insertion. 
− Node mutation – randomly select a node and change its value. 

These operators induce changes at the phenotype level. In Figure 10, we show 
examples of the application of the crossover operator. As can be seen, the 
crossover between two images can produce interesting and unexpected results. 
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Additionally, there are cases in which the images seem to be incompatible, i.e. 
images that, when combined, result in “bad” images. 

  

    
Figure 10. In the top row, the progenitor images. In the bottom row, some examples of the 

results generate by the crossover among them (color images available at 
http://www.dei.uc.pt/~amilcar/softcompbook/fig10.htm) 

In Figure 11 we give examples of images generated through mutation. Once 
again, the results of this operation can give quite unexpected results. 

 

    

    

Figure 11. In the top row, the original image. In the bottom rows, several mutations of the 
original image. The images a and b where generated through node mutation, c and d 

through node insertion, e through node deletion, f and g through sub-tree swap, h by sub-
tree replacement (color images available at 

http://www.dei.uc.pt/~amilcar/softcompbook/fig11.htm) 
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4.2.3 Model 

In NevAr, the assignment of fitness is made by the user and, as such, she/he has a 
key role. The interaction of human and computer poses several problems. For 
instance, we cannot use populations with a large number of individuals, or make 
big runs. It would be unfeasible to expect that a human would be willing to 
evaluate one hundred individuals per population over a period of one thousand or 
more populations. Thus, to produce appealing images, NevAR must do it in few 
evolutionary steps and in a low number of individual’s evaluations.  
The fact that NEvAr is an interactive tool also has the advantage that a skilled user 
can guide the evolutionary process in an extremely efficient way. She/he can 
predict which images are compatible, detect when the evolutionary process is stuck 
in a local optimum, etc. In other words, the user can change its evaluation criteria 
according to the specific context in which the evaluation is taking place. In the 
design of NevAr, we took under consideration these aspects. 

Figure 12 shows the model of NEvAr. In the following we will call experiment 
to the set of all populations, from the initial to the last, of a particular GP run. 

NEvAr implements a parallel evolutionary algorithm, in the sense that we can 
have several different and independent experiments running at the same time. It is 
also asynchronous, meaning that we can have an experiment that is in population 
0, for example, and another one that is in population 100. Additionally we can 
transfer individuals between experiments (migration) and can also transfer 
individuals from one population to another. 
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Figure 12. The evolutionary model of NEvAr. The active experiment is depicted in gray. 

We will illustrate the utilization of this model through an example. Let’s 
suppose that the user creates, to start, two different experiments, a and b, the initial 
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population of a is randomly generated and has size N, and the initial population of 
b has size 0. The user focuses his efforts in experiment a and evaluates the 
individuals of successive populations generated by NEvAr. When the user finds 
images that she/he likes, she/he adds these images to the current population (in this 
case the population 0) of experiment b. If at a given point the user feels that the 
evolutionary process would benefit if the next population was generated by the 
combination of the individuals of the current population with individuals 
previously transferred to population b, she/he adds those individuals to the current 
population and the evolutionary process continues. 
If the user, at a certain point, chooses to focus on experiment b, NEvAr will 
generate a new population from the current one (population 0), which is 
composed, exclusively, by individuals transferred from a. Thus, the initial 
population of experiment b is not random, but exclusively composed by fit 
individuals that were originally generated in other experiments. In fact, experiment 
b can be seen as a database of images, which may be used to initialize future 
experiments. We may generalize this approach by organizing a gallery of images. 

As stated before, NEvAr also allows the migration within experiments. This 
feature is important due to the limited size of each population, since it allows the 
revival of images from previous populations. It is also possible to go back to a 
previous population and change the evaluation of the individuals, which allows the 
exploration of different evolutionary paths. 

In Figure 13 we give some examples of images generated by NEvAr). These 
images were presented on the exhibit “Art and Aesthetics of Artificial Life”, 
Nicholas Gesseler (curator), which took place at the Center for the Digital Arts of 
the UCLA. 
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Figure 13. Some of the images presented the “Art and Aesthetics of Artificial Life” exhibit 
(color images available at http://www.dei.uc.pt/~amilcar/softcompbook/fig13.htm) 

The results achieved with NEvAr clearly show the power and potential of 
interactive evolution techniques, and the advantages of the reuse of past solutions 
(images). The galleries of images play an increasingly important role in the 
generation of new images. The chosen representation allows the recombination of 
images in interesting ways yielding unexpected, yet fit, images. 

The results also show that it isn’t necessary to resort to complex primitives, 
such as fractals or other complex functions, to generate complex and interesting 
images. What is necessary is a set of simple functions that can be combined in 
complex ways. 

5 The Unifying Architecture 

The analysis of our previous work, described in the last section, took us to a point 
where we realized that it was possible to settle a common framework 
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(representation language) for the objects manipulated by the algorithms in different 
domains. The common representation language which emerged is a set of 
hierarchical structured objects (HSOs). It can be defined more precisely by means 
of a grammar that we partially show below using the traditional BNF formalism: 
 

<structure> ::= <node> | <node>({<structure>}+) 
<node> ::= <name> | <name>({<attribute>}+) 
<attribute> ::= <type-attrib>(<name>) 
<type-attrib> ::= link-in(<value>) | link-out(<value>) 
 
It is possible to use the same common language to represent objects from 

different domains. The objects represented in Figures 3, 4 and 6 are, in fact, 
instantiations of the above described HSOs, and only the non-terminals <name> 
and <value> depend on the domain. The main advantages of the adoption of such a 
representation are that it permits a full integration of EC and CBR mechanisms in 
the same architecture, and also the inclusion of objects from different domains in 
the same knowledge base. This last characteristic makes the implementation of 
methaforical transfer mechanisms possible, which will be further explored in 
Section 7. 

The proposed architecture (Figure 14) builds upon this representation and 
models the creative process as an iterative sequence of steps, which resembles 
some models proposed by psychologists like by Guilford [2], Dewey [1], 
Mansfield and Busse [64], Poincaré [65], Rossman [66], Wallas [3] and others. 
The main goal is to propose new ideas, which are transformations of hierarchical 
structured objects contained in a Knowledge Base (KB). The quality of a new idea 
depends on its novelty and on its suitability to solve a given problem. Two key 
modules play a central role in the process: the Selector and the Generator. The first 
one is intended to produce ideas (which are also hierarchical structured objects) by 
exploring the knowledge space. The second one manipulates the selected ideas and 
proposes new ones to the user (typically, a human user). To conveniently feed the 
Generator, the first module must be fluent (i.e., must have the capability to 
produce a wide variety of ideas), even if at the expenses of taking cognitive risks. 
The second module, which must contribute to control the overall quality of the 
proposed ideas, may adopt two strategies: it may try to increase the overall novelty 
of the proposed ideas (e.g., by recombining them) or act towards an increase of 
their overall appropriateness (e.g., by adapting them to the problem to solve). 

The KB is initially set up through a Knowledge Filler, which may be controlled 
by a human user or act autonomously. It also may fill the KB with domain 
knowledge or randomly create the necessary structures. The KB may evolve 
during the process. This is done through a Feedback Controller, which may feed 
the KB with new ideas proposed by the Generator. Similarly to the Knowledge 
Filler, the Feedback Controller may act autonomously or not. 
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Figure 14. The proposed architecture 

We can draw a parallelism between the proposed architecture and the way EC 
and CBR solve problems (see Table 1). In EC, a population (KB) is evaluated and 
individuals (ideas) are selected according to a fitness function. This may be seen as 
a selection process. Afterwards, genetic operators play the role of the Generator 
and proposed ideas are fed back to the KB. In CBR, cases (ideas) from a case base 
(KB) are selected according to a metric. Adaptation operators transform (generate) 
the selected cases. Proposed cases may be fed back to the KB. 

Table 1. Similitude between the hybrid architecture, EC and CBR 
Proposed Architecture Evolutionary 

Computation 
Case Based Reasoning 

Knowledge Base Population Case Base 
Selector Evaluation/Selection 

(w./fitness function) 
Selection (w./ metric) 

Generator Genetic Operators 
(crossover, mutation, ...) 

Adaptation Operators 

The architecture may be explored in many ways. The objects may be produced, 
used and manipulated either by CBR and EC mechanisms. We may use CBR in the 
Selector and apply genetic operators in the Generator to improve diversity. We 
may also use the fitness function to select ideas and adaptation operators to gain 
adequacy. We may even change the mechanisms for the Selector and the Generator 
in each cycle; the choice for each combination of them may depend on the 
evaluation of the intermediate results and/or on the specific goals in mind.  

In the next section, we will show an example of how this architecture may deal 
with creative problem solving using the proposed common knowledge 
representation. 

6 Example 

The following example illustrates a possible way of combining EC with CBR in 
the framework of the proposed hybrid architecture, showing how a case library and 
a retrieval metric can be coupled with an EC system. 
Consider that we have a case library of images and that the user chooses one of 
these images (see Figure 15). Using a similarity metric, the system compares the 
chosen image with the other images in the database. In this example, and for the 
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sake of simplicity, we decided to use the root mean square error as similarity 
metric. 

 It is worth noting that this measure isn’t the most adequate for our goals. It 
would be probably best to use a metric that takes into account the similarity 
between the genotypes of the individuals. Considering that the individuals are 
represented by graphs (trees in this particular case), we could use, for instance, the 
Hamming distance or the maximal common sub-graph as metrics [67]. 

 
Figure 15. Some of the cases in the case library. The selected image has the score of 100 

(color image available at http://www.dei.uc.pt/~amilcar/softcompbook/fig15.htm) 

The most similar images will be used to initialize de EC algorithm. Thus, these 
images will be added to the initial population. In this example the number of 
images added was five, including the image selected by the user. The first 
population (see Figure 16) will therefore be composed by five images from the 
case library and eleven randomly created images (population size was set to 
sixteen). 

 
Figure 16. The initial population. The first five images were retrieved from the case library 
using the similarity metric; the other images were randomly created (color image available 

at http://www.dei.uc.pt/~amilcar/softcompbook/fig16.htm) 

From this point on, the system uses the EC process to create new populations of 
images. The process is similar to the one described earlier: the user makes the 
assignment of fitness, and the genetic operators are the ones previously described. 

In Figure 17, we can see the first generated population. The numbers bellow the 
images indicate the fitness score assigned to each image by the user. In Figure 18, 
we show the twentieth population, yet to be evaluated. 
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Figure 17. Population number 1 (color image available at 
http://www.dei.uc.pt/~amilcar/softcompbook/fig17.htm) 

 
Figure 18. Population 20, not yet evaluated (color image available at 

http://www.dei.uc.pt/~amilcar/softcompbook/fig18.htm) 

While the evolutionary process is taking place, images that have a fitness score 
above a given threshold value are added to the case library, thus feeding the case 
library with the best individuals found. In Figure 19 we show a partial snapshot of 
the case library after twenty populations. The first row of images comprises the 
images that were added to the case library from the generated populations. 

 
Figure 19. Snapshot of the case library after twenty populations (color image available at 

http://www.dei.uc.pt/~amilcar/softcompbook/fig19.htm) 

We verify that by using the proposed model this way we speed up significantly 
the process of image generation. 
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7 Improvements 

 
The proposed architecture opens an exciting range of research opportunities. We 
are currently exploring ways of taking the best of it to produce creative systems 
with improved capabilities. 

The unifying characteristics of the architecture leads us to a situation in which 
there can be several different domains represented through the same principles and 
coexisting in the same environment. According to many creativity researchers 
(e.g., Guilford [68]) and to our own intuition, the ability to interrelate ideas from 
different domains can be determinant to a creativity outcome. In fact, the core of 
many creative products (be they artistic, scientific or others) lies exactly in the 
association of apparently unrelated ideas. Moreover, the Human Being inhabits a 
heterogeneous world and his own survival depends upon the understanding and 
processing of such a complex and widespread information. This takes us to the 
conclusion that our architecture can be much improved (i.e., be more creative) if 
we add a process to interrelate different domains that can coexist in the same 
knowledge base. 

Metaphor theories [69][70] centre mainly on the understanding of metaphors, 
establishing correspondences between concepts of the domains involved (e.g., in 
the metaphor “Star Wars is the King Arthur Saga”, Veale and Keane establish 
correspondences between the concepts that are present in both stories). In a project 
named Dr. Divago, Pereira and Cardoso [71] explore these Metaphor theories to 
search for cross-domain mappings that are used to make translations of concepts 
between domains. These translations are necessary to apply cases (Dr. Divago is 
also a CBR project) from one domain onto the other. 

We think the ability to establish cross-domain transfer of knowledge is a vital 
future development for our work. With this feature, our systems will be able to 
explore more wide and varied spaces, and get ideas from apparently sterile 
grounds. 
Another improvement that we are exploring comes from the observation that, in 
our framework, cases may be represented as partonomic hierarchies, whose leaf 
nodes can be represented as trees, thus making a two level case representation. 
This makes the representation more flexible to solve problems at different levels of 
granularity. It also gives the possibility to exploit the case representation from the 
evolutionary and adaptation viewpoints, allowing these different representation 
levels to be used in more complex reasoning processes. The more abstract level of 
the representation is associated with the functional description of a case, while the 
less abstract level is associated with the structural and/or behavioral aspect of the 
node it is associated with. 

As an example of this kind of representation, we return to the case already 
presented in Section 4, describing an Arithmetic and Logic Unit (ALU). In Figure 
3 we have shown the more abstract level representation that describes how the 
ALU is divided. The leaf nodes of this hierarchy can have attached a tree 
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representing the function implementation. For instance, Figure 20 describes the 
implementation of the Xor, that is used in the ALU. This dual representation 
enable us to do a two stage evolutionary process. We can first evolve the 
functional description of the case and then evolve the structure associated to each 
function node. In the ALU example, we can reach a different ALU, while at a finer 
level we can also evolve the Xor implementation. 

Nand4

Xor

Nand2 Nand3

Nand1 Nand0A

A B

B

A B
 

Figure 20. The representation of the Xor node in Figure 3. 

8 Conclusions 

Creative Reasoning is increasingly challenging research groups mainly from the 
area of Artificial Intelligence. Several computational models have been proposed, 
mostly inspired on cognitive and on biological models, and a wide range of 
artistic, architectural and engineering domains of application are being explored. 
There is a diversity of computational approaches to the problem, but Case Based 
Reasoning and Evolutionary Computation are the most common techniques and, in 
our opinion, the most promising ones. EC techniques offer diversity while adapting 
to environmental changes, are efficient in dealing with complex search spaces and 
explore parallelism in a natural way. CBR techniques can explore previous 
knowledge in versatile ways and have good explanatory capabilities. We argue that 
creative reasoning will benefit from the cross-contribution of these techniques. 

During the last years we have separately explored CBR and EC-based 
computational approaches to creativity. In Section 4 we have briefly presented 
some of the results achieved, focusing on four developed applications in the 
domains of Design, Music Composition and Image Generation. From these efforts 
two key ideas emerged: first, the representation formalisms we were using could 
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be generalized into one common knowledge representation; second, there were 
strong similarities between the computational mechanisms we were using. 

As a result of this synthesis work we proposed in Section 5 a hybrid architecture 
which empowers cross contributions from CBR and EC. The architecture builds on 
the above mentioned common representation language. 

The proposed architecture, as was illustrated by the example in Section 6, fully 
integrates EC and CBR techniques: we may use the typical mechanisms of both 
paradigms in each of its core modules, the Selector and the Generator. The generic 
characteristics of the representation language and the computational mechanisms 
we use allow its application to a wide range of domains. Moreover, in spite of 
being a creativity-oriented architecture, its features leads us to believe that it may 
prove useful in other problem-solving tasks. 

This framework also enables the coexistence of objects from multiple domains 
in the same knowledge base, providing the means to explore advanced creativity-
related concepts like metaphoric transfer. 
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