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ABSTRACT 
Nowadays, simulation of urban transit is an important task for 
major decisions in urban planning. However, current state-of-the-
art simulation frameworks do not model the driver's particular 
behavior or approach such task in very simplistic ways. This 
paper tries to overcome this limitation by introducing a set of 
features to reproduce several aspects of a driver’s personality. We 
conduct several experiments to assess the impact of these features 
on city transit. The experimental results indicate that drivers’ 
personality has a significant impact on the flow of city transit.  

 

Categories and Subject Descriptors 
.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence – 
intelligent agents, multi-agent systems.  

General Terms 
Measurement, Experimentation, Human Factors, Theory. 

Keywords 
Experimentation, Simulation, Traffic, Driver Personality, MAS, 
Agent Behavior, Artificial Intelligence, Ant Colony Optimization. 

 

1. INTRODUCTION 
The study of urban traffic is an increasingly important field given 
the need to explore new traffic-control strategies and to make 
important decisions in urban planning. However, infrastructure 
modifications often have high costs and the consequences of such 
changes must be studied thoroughly. Traffic simulators provide a 
cost-effective way to model traffic flow in a realistic manner, 
being used to predict the consequences of infrastructure 
modifications and to understand certain traffic phenomena.  

Current microscopic traffic simulators allow for an agent-based 
simulation, enabling the individual modeling of vehicles and 
allowing us to control/influence their behavior. These tools 
already include important driving behaviors such as car following 
and lane changing.  However there is room for improvement, 
especially regarding personality. Personality traits and emotions 
influence the way drivers behave and can consequently have an 
impact in the entire system in which the driver is involved. In 
order to achieve a more realistic portrayal of real life traffic we 
propose studying the effect of personality parameters such as 
distraction, stubbornness, irregularity and aggressiveness. Our 
main contributions are: 

• the introduction of a set of features that are able to 
reproduce several aspects of a driver’s personality; 

• the study of the impact that these personal features have on 
city transit. 

This paper is structured as follows. In section 2 we present the 
state of the art on driver's behavior. Section 3 describes the tool 
used in the development of this work. Section 4 explains the 
developed architecture, experiments and assumptions. Section 5 
presents the results, which are discussed in Section 6. Finally, in 
Section 7, we present the final conclusions. 
 

2. STATE OF THE ART 
Current state-of-the-art simulation frameworks either do not 
model the driver's particular behavior or have a somewhat 
simplistic approach regarding such modeling.  

For example, the work of Vaa [1] is focused on the lack of 
understanding of human cognition in the current state of the art 
and the need for a deeper understanding of risk compensation. 
Older theories affirm that drivers have a “target level of risk”. 
However, Vaa believes that this concept does not grasp the varied 
dynamics of thinking and feeling and should not be regarded as a 
number, but as a feeling. So it should be replaced with “target 
feeling” concept. In conclusion he states that by combining risk 
monitoring and target feeling “the development of driver 
behaviour models can be put back on the right track.”. This work 
pointed out some of the faults that the current state of the art 
presents. The following papers offer solutions to some of the 
problems of current traffic simulators and study some of the most 
relevant features needed in order to reproduce a more realistic 
driver’s personality. 

2.1 Simulating driver behavior 
Ehlert & Rothkrantz [2] proposed a model based on reactive 
driving agents that can control a simulated vehicle and perform 
tactical-level driving. They utilized the SHIVA (Simulated 
Highways for Intelligent Vehicle Algorithms) simulator that 
models highway traffic. The developed agents combine traditional 
and reactive methods to execute their tasks but the emphasis is on 
the latter given that the response time is important. For every 
agent, sensor information that models a temporary representation 
of the world is stored in memory.. Each agent follows behavior 
rules that range from road following to respecting traffic lights 
and to performing a car-following behavior. All the behavior rules 
are influenced by subsequent behavior parameters: speed, gap 
acceptance and rate of acceleration or deceleration. The authors 
made experiments with a careful driver (having a low preferred 
speed, reasonably large gap acceptance, and a low preferred rate 
of deceleration) and a young aggressive driver in order to show 
that their driving agents exhibits human-like driving behavior and 
are capable of modeling different driving styles. 



Demir & Çavuşoğlu [3] suggested a model to create a realistic 
urban traffic environment with hazardous situations in order to 
allow novice drivers to practice in a realistic environment. The 
tool they used was the TRAFIKENT driving simulator, which is 
used for driver training. They implemented different driving styles 
to create categories of urban drivers (e.g. private car, taxi, bus 
driver; slow, normal or fast driver) and for each of those drivers 
they implemented a behavior model that consists of two 
abstraction layers: Decision Making Layer (tactical level tasks 
such as determining the right of way or lane changing) and 
Decision Implementation (operational level tasks such as car 
following or speed adaptation). They have also implemented a 
mechanism to simulate driver errors and violations such as 
following too closely (tailgating) or mistakes in yielding right of 
way. They present results that validate their behavioral model 
being able to emulate various driving styles for different 
categories of drivers. 

2.2 Aggressiveness 
Tasca [4] performed a review of existing literature on aggressive 
driving and suggested that “a more precise definition of 
aggressive driving would focus on deliberate and willful driving 
behaviors that while not intended to physically harm another road 
user shows disregard for their safety and well-being” and that 
such behaviors “are motivated by impatience, annoyance, hostility 
and/or an attempt to save time.” They state that in attitudes and 
behaviors the gender effects are negligible but there are 
substantial age-related differences. The conclusions they present 
are that the following factors appear to influence the likelihood of 
aggressive driving behavior: being young, male, in a traffic 
situation that confers anonymity, generally disposed to sensation-
seeking, in an angry mood (likely due to events unrelated to traffic 
situation), having the belief that one possesses superior driving 
skills and finally, unexpected traffic congestions.  

Laagland [5] described how aggressive driver behavior can be 
modeled. They acknowledge that in current driver behavior 
models there is an important factor missing: emotion. The most 
influential emotion is aggression, which can be defined with this 
formal description: “A driving behaviour is aggressive if it is 
deliberate, likely to increase the risk of collision and is motivated 
by impatience, annoyance, hostility and/or an attempt to save 
time.” He presented a series of aggressive behaviors (cutting, 
tailgating, etc.) and categories that contribute to aggressive 
driving: situational and/or environmental conditions, personality 
or dispositional factors and demographic variables. Also, 
according to a study he states that driving in rush-hour traffic did 
not correlate with driver aggression and that aggressive driving 
only occurred if the congestion was unexpected. They propose 
that the aggressiveness of vehicles can be represented by 
attributing weights for personality parameters (stressful drivers, 
high and low aggression drivers, etc.), and by varying the age 
factors and the anonymity levels. 

2.3 Compliance with traffic guidance 
Dia [6] intended to study the individual driver behavior under the 
influence of real-time traffic information. In order to do that he 
used the data from a behavioral survey of drivers, conducted on a 
congested commuting corridor, to define for each individual 
driver a set of preferences, perceptions, goals and personal 
characteristics. Using a Belief Desire Intention (BDI) agent 
framework and microscopic traffic simulation model (Quadstone), 

he developed cognitive agents that possess a mental state 
composed by the following mental elements: beliefs 
(representation of current state of the agent’s internal and external 
world), capabilities (executing actions), commitments (agreement 
to attempt a particular action at a particular time if the necessary 
pre-conditions are verified) and behavioral rules (which match the 
set of possible responses against the current environment). In this 
model, each driver is assigned aggressiveness, awareness, gender, 
age and familiarity with the network. 

Gao & Wang [7] explored the driver's route choice behavior under 
guidance information with a combination of decision field theory 
(DFT) and Bayesian theory and developed a model that describes 
a driver’s propensity to comply with received guidance 
information. They state that in human's decision-making process 
there is a threshold parameter that regulates the trade-off between 
the decision-making speed and quality (cautious drivers tend to 
use higher thresholds and impetuous drivers use lower values – 
leading to shorter deliberation times that result in insufficient data 
processing). They also stated that route criteria can attribute more 
importance to total distance or total time required to complete that 
route. In conclusion, they suggest that the following factors 
critically affect drivers’ response to guidance information: the 
confidence level of guidance information, travel experience, 
inherent route preference, decision-making speed/quality and 
route choice criteria. 
 

3. TOOLS 
In order to simulate the traffic system logic we needed a road 
traffic simulator. The works of Demir [3] and Ehlert [2] propose 
interesting approaches but the simulators used in such works are 
poorly documented and the SHIVA project is no longer active. 
With that in mind, we opted for the Simulation of Urban MObility 
(SUMO) [8] which is an open source, microscopic road traffic 
simulation package that offers the possibility to simulate how a 
given traffic demand moves through a given road network. It was 
analyzed by Krajzewicz [9] and is described as being multi-
modal, which means that there can be various types of 
transportation vehicles besides passenger cars. It is also purely 
microscopic, meaning that every vehicle has their own route, and 
moves individually through the network. It is a space continuous, 
time discrete (the default duration of each time step is one second) 
and collision-free system. It also offers support for implementing 
traffic lights. Our system used SUMO version 0.12.3. 
 

4. METHODOLOGIES 
In this paper, we approach this theme by using a Multi-agent 
System (MAS) to study the influence of drivers’ personality  
on city transit through traffic simulation. Due to the driver 
behavior of the simulation tool being already implemented and to 
the tool’s constraints we decided to develop the following 
personality features:  

• Distraction – Taking a wrong turn (or several) along the 
route. 

• Stubbornness – Unwillingness to accept the proposed 
route. 

• Irregularity – Inability of a driver to maintain a constant 
speed. 



• Aggressiveness – Defining driver types according to age, 
gender and temper. 

4.1 System Architecture 
Our system is divided into five main modules: 

• Agent: contains all the information and actions relative to 
each individual agent; 

• Constants: contains global constants that are used by the 
other modules; 

• Controller: the main class – it is responsible for parsing 
the network file, creating the network and its population, 
for communicating with SUMO and for saving the 
simulation results to a file; 

• Network: contains the relevant information of the 
network in question – the layout, the distances and time 
step occupancies; 

• Population: serves as an intermediate between the 
Controller and the Agents and is responsible for creating 
the agents, parsing the route files and attributing routes to 
the agents and for communication. 

 
Figure 1 - Communication Process 

 

4.2 Assumptions 
The SUMO simulator already has the following aspects hard-
coded: stopping at traffic lights, switching lanes, overtaking and 
applying traffic rules. So these driving parameters will not be 
changed. Also, SUMO uses a collision-free model so no traffic 
accidents will be considered in this work. 

4.3 Personality features 
The implementation of the following features intended to create a 
more realistic portrayal of the diversity of driver behaviors in a 
city. These features can be divided into two groups: the 
stubbornness feature which assumes the existence of an 
information service that provides drivers with information about 
traffic congestion; the distraction, aggressiveness and irregularity 
features which do not make that assumption. 

4.3.1 Distraction 
This feature represents situations in which a person is not 
experienced/familiar with the environment or is dealing with a 
high cognitive load (talking on a cell phone for example), 

therefore being distracted, and consequently taking one or many 
wrong turns along its route. 

The experience/familiarity of a driver with the network in which 
he is traveling obviously affects the amount of wrong. A person 
who is very familiar with a certain route is much less prone to 
make a mistake along the way than a person who is traveling 
trough that path for the first time.  

According to the World Health Organization (WHO) [10] a 
percentage between 1% and 7% of drivers have been observed 
using mobile phones in several European countries while driving. 
They also report that in the United Kingdom "45% of drivers 
reported text messaging while driving" and that in the United 
States “27% of American adults report having sent or read text 
messages while driving”. One of the obvious implications of this 
are driving accidents: WHO [10] refer that “in Spain, an estimated 
37% of road traffic crashes in 2008 were related to driver 
distraction”. Being driver distraction of such importance, its 
influence combined with network familiarity will be studied in a 
route selection point of view: how distraction levels contribute to 
make mistakes along a certain route. 

4.3.2 Stubbornness 
This trait refers to the unwillingness of an agent to accept the 
proposed route. The rejection of route suggestion might be caused 
by having little confidence on the system and by the belief that 
drivers have in their better judgment of the current state of traffic 
in order to define a more suitable route. 

Gao [7] suggests that aggressive drivers were less prone to act in 
accordance with received guidance information. However, no 
significant proof of this correlation was found so we will assume 
that stubbornness and aggression are independent.  

4.3.3 Irregularity  
The concept of driver imperfection refers to the inability of a 
driver to maintain a constant velocity, causing fluctuations in 
speed that affect the vehicles behind. The car-following model 
used in SUMO was developed by Krauß [11]. In it, each driver 
computes a safe velocity, in order to be able to brake fast enough 
to not collide with the vehicle ahead. In addition there is a 
“randomization step” in which a random amount that is uniformly 
distributed between 0 and σ*accel (where σ refers to driver 
imperfection and accel refers to a vehicle’s acceleration) is 
subtracted to that safe velocity.  

4.3.4 Aggressiveness 
Dukes et al. [12] claims that aggressive driving is a growing 
concern. They state that "64% of Americans believed that drivers 
were driving much less courteously and safely than five years 
ago." thus being an important aspect of driving behavior.  

The implemented feature refers to the definition of various types 
of drivers according to age, gender and temper. The work of 
Tasca [2] initially suggests that “gender effects are negligible but 
there are substantial age-related differences”. Afterwards they 
state that the factors which increase the probability of aggressive 
behavior are “being young, male, in a traffic situation which 
confers anonymity, generally disposed to sensation-seeking, being 
in an angry mood (likely due to events unrelated to traffic 
situation), the belief that one possesses superior driving skills and 
finally unexpected traffic congestions.” From these stated 



parameters, we will not consider the anonymity factor nor the 
occurrence of unexpected traffic congestions.  

According to Wickens et al. [13], driver aggression is greater for 
males (38.5%) than females (32.9%) and younger drivers (from 
18 to 34 years of age) reported the highest occurrence of 
perpetrated driver aggression (47.3% for females, 54.5% for 
males). The oldest drivers (above 55 years of age) reported the 
lowest rates of driver aggression: 15.1% for females and 20.9% 
for males. 

With such data in mind we decided to create the following driver 
types:  

– courteous young male, courteous young female, aggressive 
young male, aggressive young female, courteous middle-aged 
male, courteous middle-aged female, aggressive middle-aged 
male, aggressive middle-aged female, courteous elder male, 
courteous elder female, aggressive elder male and aggressive 
elder female. 

Each driver type will be assigned a specific value for minimum 
gap acceptance, reaction time, acceleration and deceleration rates 
and desired speed. The minimum gap acceptance parameter 
allows us to simulate the tailgating behavior (following someone 
too closely) by defining low gap acceptance values. The tailgating 
phenomenon is, according to Björklund [14], the driving situation 
that provokes most irritation. In Figures 2 and 3 we can see the 
effects of differentiated minimum gap acceptance values in 
SUMO: 

 
Figure 2 – Default minGap values 

 
Figure 3 – Differentiated minGap values 

According to Holland et al. [15] one of the personality factors that 
influence driver behavior is Locus of control (LOC). Drivers with 
internal LOC “perceive outcomes to be dependent on their own 
skill, efforts or behaviour” which enables them to be more 
responsive than externally oriented drivers, which take fewer 
precautions to prevent road accidents. One consequence of 
internal LOC might be a more risky driving style, caused by the 
drivers’ belief in their better driving skills in order to avoid an 
accident. Given this information, the driver's reaction time will be 
used to simulate the influence of LOC and also to simulate elderly 
people's slower reaction capability. However, it does not seem to 
exist a consensus on what is the actual correlation between the 
driver’s reaction time and factors such as gender, age, alertness or 
driving experience. Davis [16], Mehmood & Easa [17], McGehee 
et al. [18] and Triggs et al. [19] present different values for 
reaction time, ranging approximately from 0.7 to 2.3 seconds. 
Mehmood & Easa [17] states that reaction time increases with age 
and that females have larger reaction times. The reaction time 

values used in this experiment take these studies into account. 
Both acceleration and deceleration rates and desired speed will be 
a result of the aggressiveness of the driver and also of his 
responsiveness. 
Tasca [4] considers gender effects to be almost negligible. On the 
other hand, Holland et al. [15] affirm that “women have more 
external LOC than men”. Our belief regarding this matter is closer 
to the opinion presented by Tasca [4], so, we considered gender 
effects to be almost negligible by only slightly altering parameters 
between male and female drivers, attributing slightly more 
aggressive parameters to male drivers.  

Regarding age, in young drivers we defined a greater percentage 
of aggressive drivers, in middle-aged drivers a more balanced 
percentage and in elderly drivers a smaller percentage of 
aggressive drivers. Being predisposed to sensation-seeking and 
believing to possess superior driving skills are also implicitly 
taken into account in the cautious/aggressive driver ratio. 

4.3.4.1 Aggressiveness parameters 
SUMO's standard parameters' values are based on the work of 
Krauß [11] and are defined as follows: 

accel="2.6"	  decel="4.5"	  minGap="2.5"	  maxSpeed="70"	  tau="1.0"	  

(where accel corresponds to the vehicle's acceleration, decel refers  to the 
vehicle's deceleration, minGap corresponds to the minimum gap 
acceptance, maxSpeed refers to the vehicle's maximum speed and tau 
corresponds to a driver's reaction time). 

Initially, we defined young aggressive drivers as having a small 
tau value, i.e., having a reaction time smaller than one second. 
However, this produced unrealistic results so we opted for only 
using values equal or greater than one second for the reaction time 
parameter.  

Having this in mind, we created several driver types based on the 
parameters described in Table 1. It should be noted that these are 
merely tentative values – more attention was given to the 
difference of parameter values between driver types than to the 
parameter values themselves. However, the fact that the minGap 
parameter is only configurable in the most recent versions of 
SUMO (which currently have that previously referred bug 
regarding the entering of vehicles into junctions) causes 
widespread jams and produces unrealistic results. So, as 
previously stated, we opted for using a previous version of SUMO 
(version 0.12.3) that does not offer the configuration of the 
minGap parameter but in which that bug is not present. 

 

 
 
 
 
 
 
 
 
 
 
 

 



type	  
acceleration	  

(m2/s)	  
deceleration	  

(m2/s)	   sigma	  
maxSpeed	  

(m/s)	   minGap	  (m)	   tau	  (s)	  

Young	  

courteous	  male	   2,5	   4,5	   0,5	   23	   2,5	   1	  

courteous	  female	   2,4	   4,4	   0,5	   23	   2,5	   1	  

aggressive	  male	   3,1	   5,5	   0,4	   33	   1,2	   1	  

aggressive	  female	   3	   5,4	   0,4	   33	   1,3	   1	  

Middle-‐aged	  

courteous	  male	   2,4	   4,1	   0,6	   21	   2,5	   1,5	  

courteous	  female	   2,3	   4	   0,6	   21	   2,5	   1,5	  

aggressive	  male	   2,9	   5	   0,5	   28	   1,6	   1,3	  

aggressive	  female	   2,7	   4,9	   0,5	   28	   1,7	   1,4	  

Elder	  

courteous	  male	   2,3	   3,8	   0,7	   19	   2,5	   1,9	  

courteous	  female	   2,2	   3,7	   0,7	   19	   2,5	   2	  

aggressive	  male	   2,6	   4,5	   0,6	   25	   2	   1,7	  

aggressive	  female	   2,4	   4,4	   0,6	   25	   2,1	   1,8	  
Table 1 – Aggressiveness: driver types 

 

5. EXPERIMENTATION 
The objective of this work’s experiments is to evaluate the 
influence of the personality parameters in a network's 
performance. As a proof of concept we ran experiments for two 
different traffic networks simulating two different situations. So, 
the testing process was executed in two different networks: 
Lattice and Radial and Ring. These networks are illustrated in the 
following figures:  

 

Figure 4 – Radial and Ring (left) and Lattice networks (right) 

In this paper we study the overall effects that these features will 
have in city traffic. Therefore, the results shown in the following 
sections refer to the average travel time in the given scenario. For 
example, we do not intend to study the number of wrong turns 
that a distracted user makes along the way but rather the effects 
that those wrong turns will produce in the overall traffic. 

5.1 Experimental Setup 
We compare the results obtained with the developed personality 
features to those of a default SUMO population (i.e. a collection 
of vehicles with standard values) on the Lattice and  Radial and 
Ring. We experimented with 5.000 vehicles and 10.000 vehicles 
to enable the occurrence of some congestion on the networks. The 
developed features were at first tested separately and afterwards 
simultaneously. 

5.1.1 Distraction 
Before beginning the simulation, we attributed a random value to 
each driver to represent the distraction and familiarity parameters. 
A distracted user who is also unfamiliar with the network will  
have a distorted view of the network. We simulate this error 
making process by tampering with each driver's perception of the 
network, altering the weights that a driver associates with each 
edge: 

if	  (distraction	  >	  distractionThreshold)	  and	  (familiarity	  <	  
familiarityThreshold):	  
	  	  	  for	  edge	  in	  graph:	  
	  	  	  	  	  	  for	  sucessor	  in	  graph[edge]:	  
	   distance	  =	  graph[edge][sucessor]	  
	   graph[edge][sucessor]	  =	  distance	  +	  	  
	   	   	   	  random.uniform(-‐distance,	  distance)	  

 

These random values follow a Gaussian distribution with mean 
value µ = 1 and variance σ2 = 0,25 so: 
 

• value < 1 corresponds to a 50% probability; 
• value > 0.75 corresponds to a 84,4% probability; 
• value > 1 corresponds to a 50% probability; 
• value > 1.25 corresponds to a 15,6% probability. 

 
Given this, we decided to experiment with three different values 
for the distraction threshold and one for the familiarity threshold: 
 

• high distraction:  
distractionThreshold > 0.75 and familiarityThreshold < 1 

• medium distraction:  
distractionThreshold > 1 and familiarityThreshold < 1 

• low distraction:  
distractionThreshold > 1.25 and familiarityThreshold < 1 
 

We decided to only allow drivers who are not very familiar with 
the network to take a wrong path, and therefore only 50% at most 
can make wrong decisions. Then we varied the 
distractionThreshold to simulate different amounts of distracted 
drivers. In terms of probabilities, the three scenarios have the 
following probabilities:  
 

• high distraction: 42,2%; 
• medium distraction: 25%; 
• low distraction: 7,8%. 

 
Figures 6 and 7 refer to experiments with these three scenarios 
and the assumption that every driver uses the IACO [20] system. 



  
Figure 6 – Distraction: effect on trip duration with IACO algorithm 

(Lattice map) 
 

  
Figure 7 – Distraction: on trip duration with IACO algorithm  

(Radial and Ring map)  

In Figure 6 we observe that in the Lattice map, distraction is 
always harmful to overall network performance. However, in 
Figure 7 we can observe that in the Radial and Ring map – which 
is more prone to congestion occurrence given its topology – when 
heavy congestion occurs, a medium distraction is the least harmful 
of the three levels in terms of average travel time. 

We also experimented varying the user percentage in the Lattice 
scenarios, in which the distraction effects seem to be more 
consistent. 

  
Figure 8 – Distraction: effect on trip duration with IACO algorithm 

(Lattice map) 
As it can be observed in Figure 8, in the Lattice map distraction 
always has a detrimental effect on performance, independently of 
the percentage of users that adopted the system. It appears to be 

particularly harmful with a high traffic load and low user 
percentage – in that scenario, the few drivers that are using the 
system are evaluating the network incorrectly and therefore are 
not always choosing the correct path, greatly diminishing the 
system's accuracy. However, as user percentage rises, this effect 
seems to be mitigated. 
 
5.1.2 Stubbornness 
The work of Bonsall & Joint [21] suggests that there are 
numerous factors that affect the credibility of received guidance 
information, including “the extent to which it is corroborated by, 
or in conflict with, local evidence about the alternatives”, a 
“drivers’ familiarity with the local network” and “the drivers’ 
predisposition to accept advice”. Given this information we 
defined the following driver parameters: 

• experience:	  the drivers’ familiarity with the local network; 
• stubbornness: the drivers’ predisposition to accept advice. 

Similarly to the distraction feature, prior to the start of simulation, 
we attributed random values to each driver to represent the 
stubbornness and experience parameters. Bonsall & Joint [21] 
also states that experienced drivers are more likely to reject 
advice. We simulate the rejection process by assigning a random 
value that follows the same Gaussian distribution: 

if	  stubbornness	  <	  stubbornnessThreshold	  	  
	  	  	  and	  experience	  <	  experienceThreshold:	  	  
	   route	  =	  newRoute	  

 

Chen & Jovanis [22] introduces another factor that influences 
route choice: the effects of a subjects’ experience regarding the 
usage of the guidance information – an estimation of the system's 
accuracy by their temporal and spatial experiences. However, 
these parameters result from a sequence of travels along the same 
path, which will enable drivers to gain knowledge about how the 
network operates. Our work does not support this evolution given 
that it pertains to a single run in which driver’s choices are 
modified in real time. 

These random values follow a Gaussian distribution with mean 
value µ = 1 and variance σ2 = 0,25. So we defined three different 
acceptance values: 

• high acceptance: stubbornnessThreshold < 1.25 and 
experienceThreshold < 1.25; 

• medium acceptance: stubbornnessThreshold < 1and 
experienceThreshold < 1; 

• low acceptance: stubbornnessThreshold < 0.75 and 
experienceThreshold < 0.75. 

 

These acceptance values have the following probabilities:  
• high acceptance: 71,2%; 
• medium acceptance: 25,0%; 
• low acceptance: 2,4%. 
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Figure 9 – Stubbornness: effect on trip duration with IACO algorithm 

(Lattice map) 

 
Figure 10 – Stubbornness: effect on trip duration with IACO 

algorithm (Radial and Ring map) 
 

Figures 9 and 10 refer to experiments with these three scenarios. 
In Figure 9 we observe that in the Lattice map, as the acceptance 
levels increase, so does the system's performance. However, 
Figure 10 shows that in the Radial and Ring map (more prone to 
congestion), when heavy congestion occurs, the rejection of some 
of the proposed routes might even be advantageous in terms of 
average travel time. 

 
The previous experiments were executed using the IACO 
algorithm. We decided to also experiment the ST algorithm in 
these same scenarios, in order to analyze if the effects of the 
stubbornness feature were similar. 

 
Figure 11 – Stubbornness: effect on trip duration with ST algorithm 

(Lattice map) 

 
Figure 12 – Stubbornness: effect on trip duration with ST algorithm 

(Radial and Ring map) 
 

In Figures 11 and 12, the results confirm that there is a similarity 
between the performance of the IACO algorithm (Figure 7 and 8) 
and the ST algorithm regarding the stubbornness parameter. The 
main difference is that the rejection of some of the proposed 
routes is never advantageous in terms of average travel time, not 
even in the Radial and Ring map with heavy congestion. 

 
Figure 13 – Stubbornness: effect on trip duration with IACO 

algorithm (Lattice map) 

 
Figure 14 – Stubbornness: effect on trip duration with ST algorithm 

(Lattice map) 
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We also experimented varying the user percentage in these 
scenarios. Figures 13 and 14 demonstrate that in both algorithms 
the overall performance of the network increases with the 
acceptance level of the system. They also show that, for both 
algorithms, the efficiency deteriorates for high user percentages – 
it seems to stagnate in most cases.  
 

5.1.3 Irregularity 
According to Triggs and Harris [19], the structure of the model 
dynamics, such as overreactions (where drivers deliberately slow 
down to velocities lower than necessary) or reduced outflow from 
jams, “is mediated exclusively by the fluctuations that are 
introduced ad hoc through the randomization step. If these 
fluctuations are eliminated, none of the properties of traffic flow 
is modeled correctly anymore.” 

Experimentations were performed for high (σ = 0,8) and low (σ = 
0,2) values of σ. The results are presented in figure 13.  

 
Figure 15 – Effects of irregularity 

As we can observe in Figure 15, a greater driver imperfection 
leads to a worse performance in terms of travel time. On the other 
hand, a low value of driver imperfection allows for a significant 
decrease in the average travel time. 
 

5.1.4 Aggressiveness 
To experiment the created driver types we executed separate 
simulations for each age group. A study by the United States 
Department of Transportation [23] based on data from 2007, 
shows that there are no significant differences in driver population 
as far as gender is concerned. So, we established the following 
population distribution: 

 

	   Probability	  

Type	   Young	  
Population	  

Middle-‐aged	  
Population	  

Elder	  	  
Population	  

courteous	  male	   20%	   30%	   40%	  
courteous	  female	   25%	   35%	   45%	  
aggressive	  male	   30%	   20%	   10%	  
aggressive	  female	   25%	   15%	   5%	  

 

Table 2 – Driver populations: type distribution 

The study by the United States Department of Transportation [23]  
also reveals that, on a population of over two hundred million 
American drivers, the age distribution is approximately as 
presented next: 

• from 16 to 39 years of age ≈42%; 
• from 40 to 64 years of age ≈45%; 
• above 64 years of age ≈13%. 

Therefore, and in order to experiment all the driver types 
simultaneously, we established the following population 
distribution:	   

	   Probability	  

Type	   Young	   Middle-‐aged	   Elder	   Total	  

courteous	  male	   8%	   12%	   8%	   28%	  
courteous	  
female	   10%	   14%	   9%	   33%	  

aggressive	  male	   12%	   8%	   2%	   22%	  
aggressive	  
female	   10%	   6%	   1%	   17%	  

Total	   40%	   40%	   20%	   100%	  
 

Table 3 – Aggressiveness: mixed population distribution 

 

Figures 16 to 19 show a comparison between population 
containing these age groups and a default SUMO population for 
5.000 and 10.000 vehicles. 

Figure 16 – Aggressiveness: effect on trip duration (Lattice map - 5.000 
vehicles)  

 
Figure 17 – Aggressiveness: effect on trip duration (Lattice map - 10.000 

vehicles) 

0.0	  

500.0	  

1000.0	  

1500.0	  

2000.0	  

2500.0	  

3000.0	  

5000	  

se
co
nd

s	  

number	  of	  vehicles	  

Average	  travel	  Dme	  

low	  

high	  

default	  

0.0	  

500.0	  

1000.0	  

1500.0	  

2000.0	  

2500.0	  

5000	  

se
co
nd

s	  

number	  of	  vehicles	  

Average	  travel	  Dme	  

Young	  

Middle-‐aged	  

Elderly	  

Mixed	  

Default	  

0.0	  

1000.0	  

2000.0	  

3000.0	  

4000.0	  

5000.0	  

6000.0	  

7000.0	  

8000.0	  

9000.0	  

10000	  

se
co
nd

s	  

number	  of	  vehicles	  

Average	  travel	  Dme	  

Young	  

Middle-‐aged	  

Elderly	  

Mixed	  

Default	  



 
Figure 18 – Aggressiveness: effect on trip duration (Radial and Ring 

map - 5.000 vehicles) 

 
Figure 19 – Aggressiveness: effect on trip duration (Radial and Ring 

map - 10.000 vehicles) 

As it can be observed the faster and more aggressive driving style 
performed by young drivers achieves a better performance than 
other alternatives in both maps. The groups that integrate middle-
aged or elderly drivers in its population obtain worse results due 
to their poorer acceleration capabilities, lower maximum speed 
and higher reaction time. The elderly group attains the worst 
results for both maps, given their slower driving approaches. As 
the traffic load increases the difference in performance shortens, 
although young drivers still achieve better results than the other 
population groups. 

Regarding the Lattice map, we can observe that for a smaller 
traffic load, the young population achieves a slightly better 
performance than the default population. However, when the 
traffic load increases its performance deteriorates, obtaining 
poorer results than its default counterpart. This might be due to 
the fact that the more aggressive driving style performed by young 
drivers only makes them reach the congested areas sooner, 
consequently increasing congestion and waiting times. 

In relation to Radial and Ring map, and similarly to the Lattice 
map, we can observe that for a smaller traffic load, the young 
population achieves a slightly better performance than the default 
population. With the increase in vehicles in the network, young 
driver's higher speed and acceleration do not seem to make any 
difference, suggesting that congestion is so great that there is not 
enough space available for these parameters to have a positive 
influence. On the other hand, the other driver groups 
approximately maintain their performance. 

 
Figure 20 – Aggressiveness: effect on trip duration with IACO 

algorithm (Lattice map)  

 
Figure 21 – Aggressiveness: effect on trip duration with IACO 

algorithm (Lattice map)  

 
Figure 22 – Aggressiveness: effect on trip duration with IACO 

algorithm (Radial and Ring map) 

 
Figure 23 – Aggressiveness: effect on trip duration with IACO 

algorithm (Radial and Ring map) 

Figures 20 to 23 show a comparison the same populations as 
before but now using the IACO algorithm. We can observe that, 
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similarly to the previous experiments, the young drivers achieve a 
better performance than other alternatives in both maps and that 
the elderly group attains the worst results in both maps.  

The main difference resides in the fact that in Radial and Ring 
map, the young population obtains a slightly better performance 
that the default population, especially with a higher traffic load. 
This suggests that now, unlike in the previous scenario, there is 
enough space available for these parameters to have a positive 
influence. Given that the IACO distributes vehicles more evenly 
through the network, congestion is diminished and therefore there 
is room for greater acceleration and speed. Also in the Radial and 
Ring map, it should be noted that there seems to be an irregularity 
regarding the middle-aged group – with 5.000 vehicles, its 
performance is similar to the young group and with 10.000 
vehicles to the elderly group. We believe that with further testing, 
the results obtained in this map would become more normalized. 

Regarding the Lattice map, we can also observe a great 
improvement in the performance of the young population with a 
high traffic load – it now achieves results equivalent to the default 
population, while previously it had an inferior performance. 
 

6. DISCUSSION 
The results concerning the distraction parameter indicate that this 
feature only has negative effects on the network's performance 
because a distracted user who is also unfamiliar with the network 
will have a distorted view of the network. Therefore individual 
trips will be longer unnecessarily increase the amount of vehicles 
on the road at any given time. The results show that distraction is 
always harmful to overall network performance. However, when 
heavy traffic traverses a more congestion prone map, the fact that 
some drivers do not take the optimal route might disperse traffic 
and improve performance. 

The stubbornness parameter can produce a negative impact on the 
network's performance given that rejecting the service provider's 
suggested route is essentially the same as not using the system, 
making individual trips longer and consequently deteriorating the 
network's throughput. The results show precisely that, 
demonstrating how the overall performance of the network 
increases with the acceptance level. However, and similarly to 
what happens with the distraction parameter, when heavy traffic 
traverses a more congested prone map, the fact that some drivers 
reject the suggested route might disperse traffic and improve 
performance. 

Regarding the irregularity parameter, the results indicate that this 
parameter greatly influences the average travel time. However, 
and as previously referred, significant modifications to these 
values produce an unrealistic vehicle behavior. So, it was decided 
to only slightly alter this parameter’s values. Also, we decided to 
incorporate this parameter into the definition of the driver 
population in order to differentiate precise drivers from those who 
are more error prone, while maintaining the validity of the 
properties of the traffic flow model. 

The aggressiveness feature shows the influence of differentiating 
between age groups. The results show that when heavy congestion 
occurs, a more aggressive driving style by young drivers achieves 
a worse overall performance given that they reach the congested 
areas sooner, consequently increasing congestion and waiting 

times. So, an aggressive style is not always the most appropriate 
approach in order to minimize travel times. 

 

7. CONCLUSIONS 
In this paper, we presented a set of features that are able to 
reproduce several aspects of a driver’s personality in order to 
overcome the fact that most frameworks do not pay special 
attention to the driver's particular behavior. 

We developed features to simulate various driving factors such as 
driver distraction, which can for example be caused by mobile 
phones; driver aggressiveness, which varies with age, gender and 
temper; and driver irregularity, which allows us to differentiate 
good from bad drivers. Also, with the growing demand and 
diffusion of route planning mechanisms, we developed a feature 
that simulates a driver's stubbornness, i.e., his/hers unwillingness 
to accept the proposed route 

In conclusion, this work shows how personality traits and 
emotions can influence driver’s behavior and consequently have 
an impact on the whole network's performance. The developed 
features allowed us to achieve a more realistic portrayal of real 
life traffic. 
 

8. ACKNOWLEDGMENTS 
The authors are grateful for the support and advice provided by 
João Oliveirinha. This work was partially funded by the 
Portuguese Foundation for Science and Technology (FCT) under 
project COSMO with reference PTDC/EIA-EIA/108785/2008. It 
is also supported by CISUC, financed by FEDER through the 
POFC - COMPETE and by FCT, project FCOMP-01-0124-
FEDER- 022703 and by the iCIS project (CENTRO-07-ST24-
FEDER-002003) which is co-financed by QREN, in the scope of 
the Mais Centro Program and FEDER. 
 

9. REFERENCES 
[1] Vaa, T. (2001). Cognition And Emotion In Driver Behaviour 

Models: Some Critical Viewpoints. Road user 
characteristics with emphasis on life-styles, quality of life 
and safety - Proceedings of 14th ICTCT Workshop  

[2] Ehlert, P. A. M., & Rothkrantz, L. J. M. (2001). Microscopic 
traffic simulation with reactive driving agents. ITSC 2001 
2001 IEEE Intelligent Transportation Systems Proceedings 
Cat No01TH8585, 40(5), 860-865. Ieee. Retrieved from 
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnum
ber=948773 

[3] Demir, M. & Çavuşoğlu, A. (2012). A new driver behavior 
model to create realistic urban traffic environment. 
Transportation Research Part F: Traffic Psychology and 
Behaviour, Vol. 15, No. 3. 289-296, 
doi:10.1016/j.trf.2012.01.004 

[4] Tasca, L. (2000). A Review Of The Literature On Aggressive 
Driving Research. Aggressive Driving Issues Conference. 
Retrieved March 25, 2012 from: 
http://www.stopandgo.org/research/aggressive/tasca.pdf 

[5] Laagland, J. (2005). How To Model Aggressive Behavior In 
Traffic simulation. Aggressive Behavior. Retrieved from 



http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.66.
2976 

[6] Dia, H. (2002). An agent-based approach to modeling driver 
route choice behaviour under the influence of real-time 
information, Transportation Research Part C: Emerging 
Technologies, Volume 10, Issues 5–6, October–December 
2002. 331-349. doi: http://dx.doi.org/10.1016/S0968-
090X(02)00025-6 

[7] Gao, F., & Wang, M. (2010). Route Choice Behavior Model 
with Guidance Information. Journal of Transportation 
Systems Engineering and Information Technology, 10(6), 64-
69. China Association for Science and Technology. 
Retrieved from 
http://linkinghub.elsevier.com/retrieve/pii/S15706672096007
26 

[8] Michael Behrisch, Laura Bieker, Jakob Erdmann and Daniel 
Krajzewicz. SUMO - Simulation of Urban MObility: An 
Overview In: SIMUL 2011, The Third International 
Conference on Advances in System Simulation, 2011 

[9] Krajzewicz, D., Hertkorn, G., Wagner, P. & Rössel, C. 
(2002). An example of microscopic car models validation 
using the open source traffic simulation SUMO.  
Proceedings of Simulation in Industry 14th European 
Simulation Symposium, 318–322 

[10] World Health Organization. (2011). Mobile phone use - a 
growing problem of driver distraction. Retrieved from: 
http://www.who.int/violence_injury_prevention/publications/
road_traffic/distracted_driving/en/index.html 

[11] Krauß, S. (1998). Microscopic Modeling of Traffic Flow: 
Investigation of Collision Free Vehicle Dynamics. Thesis 
and dissertation, (319), 115. Forschungsbericht, Deutsches 
Zentrum für Luft- und Raumfahrt; zugl. Diss., Universität 
Köln. Retrieved from http://elib.dlr.de/8380 

[12] Dukes, R. L., Clayton, S. L., Jenkins, L. T., Miller, T. L., & 
Rodgers, S. E. (2001). Effects of aggressive driving and 
driver characteristics on road rage. The Social Science 
Journal, 38(2), 323–331. Elsevier. Retrieved from 
http://linkinghub.elsevier.com/retrieve/pii/S03623319010011
73 

[13] Wickens, C. M., Mann, R. E., Stoduto, G., Butters, J. E., 
Ialomiteanu, A., & Smart, R. G. (2012). Does gender 
moderate the relationship between driver aggression and its 
risk factors? Accident Analysis Prevention, 45, 10-18. 
Retrieved from http://dx.doi.org/10.1016/j.aap.2011.11.013 

[14] Björklund, G. M. (2008). Driver irritation and aggressive 
behaviour. Accident analysis and prevention, 40(3), 1069-
1077. Retrieved from 
http://www.ncbi.nlm.nih.gov/pubmed/18460375 

[15] Holland, C., Geraghty, J., & Shah, K. (2010). Differential 
moderating effect of locus of control on effect of driving 
experience in young male and female drivers. Personality 
and Individual Differences, 48(7), 821-826. Elsevier. 
Retrieved from 
http://www.elsevier.com/wps/find/journaldescription.cws_ho
me/603/description#description 

[16] Davis, L. (2003). Modifications of the optimal velocity 
traffic model to include delay due to driver reaction time. 
Physica A: Statistical Mechanics and its Applications, 319, 

557-567. Retrieved from 
http://linkinghub.elsevier.com/retrieve/pii/S03784371020145
77 

[17] Mehmood, A., & Easa, S. M. (2009). Modeling Reaction 
Time in Car-Following Behaviour Based on Human Factors. 
Engineering and Technology, 3(2), 93-101. 

[18] McGehee, D. V., Mazzae, E. N., & Baldwin, S. G. H. (2000). 
Driver reaction time in crash avoidance research: Validation 
of a driving simulator study on a test track. Human Factors 
and Ergonomics Society Annual Meeting Proceedings (Vol. 
44, p. 320–323). Human Factors and Ergonomics Society. 
Retrieved from 
http://www.ingentaconnect.com/content/hfes/hfproc/2000/00
000044/00000020/art00026 

[19] Triggs, T. J. & Harris, W. G & Monash University. Human 
Factors Group (1982). Reaction time of drivers to road 
stimuli. Human Factors Group, Dept. of Psychology, Monash 
University, Melbourne, Australia 

[20] Dias, J.A.C.,  Machado, P. & Pereira, F. C. (2013). Privacy-
Aware Ant Colony Optimization Algorithm. WCTR2013 
Conference. (To Appear) 

[21] Bonsall, P. W., & Joint, M. (1991). Driver compliance with 
route guidance advice: The evidence and its implications. 
Vehicle Navigation and Information Systems Conference 
1991. Retrieved from 
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=162361
1 

[22] Chen, W., & P. Jovanis, P. (1997). Analysis of a Driver En-
Route Guidance Compliance and Driver Learning with ATIS 
Using a Travel Simulation Experiment. Institute of 
Transportation Studies, University of California, Davis, 
Research Report UCD-ITS-RR-97-12 

[23] United States Department of Transportation. (2007) . 
Distribution of licensed drivers by sex and percentage in 
each age group and relation to population. Retrieved from 
http://www.fhwa.dot.gov/policyinformation/statistics/2007/p
df/dl20.pdf 

 


