
Evaluation of RECIDEpsr - An Adviser in the Domain of Psychology

Carlos Bento Penousal Machado Ernesto Costa
Laboratdrio de Inform£tica e Sistemas

Qta da Boavista, lote 1, 1
3000 Coimbra- PORTUGAL

bento~ahna.uc.pt machado~alma.uc.pt ernesto@moebius.uc.pt

Abstract

This paper introduces RECIDEPsY a case-
based adviser system in the domain of psychol-
ogy. RECIDEpsr has a library of success and
failure cases. Cases of failure are in the form
of indivisible and incompatible cases and rep-
resent constraints in the generation of a new
solution from successful cases in memory. We
present the experimental results obtained with
RECIDEpsy. These results show that indivis-
ible and incompatible cases reduce the number
of successful cases necessary to cover the domain
and decrease the number of wrong solutions given
by the system.

Ll’r°blem~ W’]Qualitative Quantitalvel "-I Case Case],"v~- -
I Metric Metric] [Spliter Merg~r~. ¢ ¢

(Sucx:essful Indivisible Incompatible~0=0,c_ j

Figure h Functional structure of IIECIDEpsr

Introduction

A Case-Based Reasoning (CBR) system depends
strongly on its methods for retrieval and reuse of previ-
ous experiences. This contrasts with systems that rely
on the generalization of solutions from first principles
(abstract knowledge).

The combination of CBR and abstract knowledge-
guided techniques led to the development of
knowledge-based retrieval systems (Koton 1989).
These systems use domain knowledge for construct-
ing explanations of why a problem had a specific so-
lution in the past. These explanations are neces-
sary to judge the relevance of the facts describing
a past problem (Bento & Costa 1993; Veloso 1992;
Cain, Pazzani & Silverstein 1991; Barletta & William
1989).

In our work on CBR we are mainly concerned with
two aspects. One is that the CBR approach is mostly
used when a strong theory is not available and past
experience is accessible. Lack of a strong theory gen-
erally means that explanations in cases are imper-
fect. We consider three kinds of imperfections in
case explanations and use them for retrieval (Bento
& Costa 1993). A second aspect relates to the role
of cases of failure in CBR. Some current CBR sys-
tems make use of them to represent and explain
unsuccessful experiences (Berger & Hammond 1991;
Hammond 1986).

In our approach, cases of failure are of two types, in-
divisible and incompatible, and represent, respectively,
intra and inter-case dependencies that were violated
during case reuse. These failures are considered for
the generation of new solutions.

We describe how cases of failure are used in an expert
system called RECIDEps}, (Reasoning with Cases
Imperfectly Described and Explained in the Domain
of Psychology).

We present results on the system’s performance with
successful cases alone and with the two types of cases
of failure used by RECIDEpsy. It is shown that in-
divisible and incompatible cases reduce the number of
successful ones necessary to cover the domain and re-
duce the number of wrong solutions given by the sys-
tem. A comparison with other systems is provided.

Overview of RECIDEpsr

RECIDEpsy functional structure comprises: a case
retriever, and a case reuser (Figure 1). The case re-
triever accesses successful cases in the case library.
For case selection it uses a qualitative and a quanti-
tative metric. The qualitative metric (Bento & Costa
1994) clusters past cases by their potential usefulness
for creation of a new solution. The quantitative metric
(Bento & Costa 1993) orders cases in each cluster
similarity between them and the new problem. The
case reuser receives case clusters ordered by decreasing

143

From: AAAI Technical Report WS-94-01. Compilation copyright © 1994, AAAI (www.aaai.org). All rights reserved.

~ 5 6 78-<
mr"

)
[] fact node O rule node

Figure 2: A case with (i) a complete set of explana-
tions; (ii) an incomplete set of explanations; (iii)
partial and a broken explanation

similarity and generates a new case that potentially has
the same solution as the new problem. New cases are
generated through application of splitting and merging
operators, constrained by indivisible and incompatible
cases.

Case Library

The case library comprises: successful, indivisible, and
incompatible cases. A successful case is represented by
a triple (79,,5, T~} (Figure 2) with 79 and S, respectively,
a set of facts representing past problem and solution,
and 7~ a set of rules representing a causal justifica-
tion. The causal justifications can be viewed ms a set
of presumably imperfect causal explanations. An ex-
planation is a proof tree that links facts in the problem
with a fact in the solution. We consider three kinds of
imperfections in explanations: (1) incomplete set
explanations; (2) partial explanations; (3) broken
planations.

In a successful case with an incomplete set of ex-
planations some solution facts are not explained and
hence are not the conclusion for any proof tree (e.g.,
Cases ii and iii , in Figure 2. Facts d and _f in these
cases’ solution are not leaves of a proof tree). A par-
tial explanation is one whose proof tree omits some
branches. This means that one or more steps in the
proof tree apply a rule for which the conditions are
necessary but not sufficient. Rule nodes representing
these rules are labeled by ’+’ (e.g., In Figure 2, case
iii, the proof tree at the left). A broken explanation is
one in which there is a gap between the proof tree and
the case’s solution (e.g., In Figure 2, case iii, the proof
tree at the right).

As mentioned before, to generate of a new solution
past cases are split and those parts considered poten-
tially useful to solve the new problem are collected and
merged into a new case that, hopefully, has a solution
similar to the one of the new problem.

Indivisible cases represent case pieces that when split
in the past conduced to the creation of cases compris-
ing wrong solutions. Incompatible cases represent case
pieces that led to wrong solutions and were created by

merging pieces from several cases.
Indivisible and incompatible cases, are represented

by a triple (79/,8/,~1) with 791 and ,5I the sets of
facts representing, respectively, problem and solution
components, and "R! a set of rules. With (79,8, T~)
representing the case being split for generation of a
new one, the semantic for indivisible cases is:

1. If Pf # 0, S$ = 13 , ~1 = 0, and 79I _C 79 then the
subset 791 in 79 cannot be split.

2. If 791=0, S1#13, 7Z1= 0, andS/ C_ S then the
subset ,51 in ,5 cannot be split.

3. If 791 = ¢, ,51 = ¢, ~! # 0, and T~I C_ ~ then the
subset T~1 in T~ cannot be split.

4. If P1 # 0, ,51# 0, T~I # 0, and 79! C 79A,51 C_
,5 A T~I C_ 7~ then subsets 791, ,5I, and T~I in 79, ,5,
and T~ have to remain in the same case piece after
the splitting process.

5. If 791 # ¢, ,51 # ¢, Tel = ¢, and 791 C 79 A ,5I _C ,5
then the subsets 791 and ,5I in 79 and ,5 have to re-
main in the same case piece after the splitting pro-
cess.

If 79f ~-- 0, ,sf # 0 , T~f # 0, and 31 C ‘5 A T~f

T¢ then the subsets ,51 and T~f in ,5 and T~ have
to remain in the same case piece after the splitting
process.

If 79f # 0, Sf = 0, T~ f # 13, and 79f C 79 A T~f ~
7~ then the subsets 791 and ~/ in 79 and T~ have
to remain in the same case piece after the splitting
process.

indivisible cases of types 1, 2, and 3 constrain the split-
ting of facts in 79, or ‘5, or T~. Types from 4 to 7 con-
strain splitting of pieces composed of subsets of 79, ‘5,
and T~.

Incompatible cases represent merging constraints.
With (79’,,5’, g’) representing the new case generated
by merging past cases, the semantic for incompatible
cases is:

If 79f # ¢, ,51 = 0, T¢1 = {3 then 79I cannot occur in
79’ as a results of merging.

If 791 = 13, ,51 # 13, T~! = 0 then ,sf cannot occur in
,5’ as a results of merging.

If 791 = 13, ,51 = 13,7~1 # 0 then ~I cannot occur in
T~’ as a results of merging.

I_f791 # 13, ,SL # 13, T~! # 13 and ;of C_ 79’ A,5I C_
S AT¢f C_T¢’ then 79I A ,5! A T~I in the new case
cannot be a result of merging.

,5I 7£ 13, T~! = 13 and 79I C 79’ A ,51 C ,5’
,51 in the new case cannot be a result of

.

,

.

2.

3.

4.

.

.

If 791 # 13,
then 79I A
merging.

If 79I = 13, "5I 7£ 13, T~I # 13 and ’5I C_ ,5’ A ~I C_ Tt’
then ,5I A ~I in the new case cannot be a result of
merging.

144

7. If 7~! # 0, S! = 0, T~I ~ 0 and P! _C P’ A T~I C_ 7~’
then P! A T~! in the new case cannot be a result of
merging.

As with indivisible cases, incompatible ones of type 1,
2, and 3 relate to merging constraints at the fact level.
Types from 4 to 7 relate to constraints at case’s piece
level.

Case Retrieval

Case retrieval is performed on a fiat memory of suc-
cessful cases. The retrieval process involves two steps:

1. Clustering of potentially useful cases.

2. Ranking of clustered cases.

In the first step, five clusters of past cases are created.
Each cluster comprises cases for which it is believed
their solution facts and the new solution facts verify a
specific set relation.

Let 3 be the set of facts representing the solution for
a case in memory and 3’ the set of facts representing
the solution for a new problem. Each cluster is com-
posed of the cases verifying the following conditions (in
the examples it is assumed the case library is composed
of cases in Figure 2):

CLUSTER No. 1 - Cases with 3 = 3’.
e.g. If the new problem is described by the set of facts
(1, 2, 3}, cluster no. 1 will be composed of case i (Fig-
ure 2). Case i is completely explained, that is facts
{1, 2, 3} describing case’s problem are necessary and
sufficient .for the solution $ = {a,b} and so the new
problem’s solution is 31 = 3 = {a_, b}.

CLUSTER No. 2 - Cases possibly with 3 = 3’.
e.g. For a new problem described by {4, 5, 6, 7, 8},
cluster no. 2 will be composed of case ii. As the new
problem is similar to" the one described in case ii it
is possible that case and new problem’s solutions are
similar. The reason why we are not certain about this
is that case ii is not completely explained. So, we do
not know if facts 7 and 8_ are causally linked with fact
d in the solution: This means the problem that has
the solution S = {c,d} may be different from the one
represented in case ii provided it has facts 4, 5, and 6.

CLUSTER No. 3 - Cases possibly with 3 D $’.
e.g. Considering a new problem {_1, 2_}, case i is the one
in cluster no. 3. As 1 and 2 are the causal premises
for fact a in this case’s solution, it is possible that the
new problem solution is {a) = 8’ C 8. The uncer-
tainty about this is based on that unknown intra-case
dependencies may be violated by splitting case i.

CLUSTER No. 4 - Cases possibly with $ C 8’.
e.g. With a new problem {_1, 2_ , 8_} , cases i and
ii are the ones in cluster no. 4. As case i has the
solution 3 = (a,b} for problem {1,2,3} and case ii’s
solution {c,d} is supposed to be the one for problem

{4, ... , 8} then it is possible that {_a, b} = 3i C 3’ and
{c,d} ~- 3ii C 3’, with 31 and 3ii, respectively, the
solutions for cases i and ii. We are not certain about
this as dependencies between facts in 3’ are unknown.

CLUSTER No. 5 - Cases possibly with 3 N 3’ # @.
e.g. Assuming the new problem is {3, 4, 5, 6, 15}, as 3
is necessary and sufficient for b in the context of case i
this case is in this cluster. The same for case ii in which
4, 5, and 6_ are the facts that causally explain _c in the
solution. In both cases it is possible that Si N 3’ = {b}
and 3ii f~ 3’ = {_c}. The uncertainty on this is similar
to the one described for cluster no. 4.

These clusters are not necessarily disjoint. Depen-
dencies in clusters no.s 2 and 3 can be viewed as intra-
case dependencies. Dependencies in clusters no. 4 and
5 can be seen as inter-case dependencies.

Cases within each cluster are ranked by an
explanation-based similarity metric (Bento & Costa
1993).

The retrieval procedure described above has two
main properties: (1) case clustering organizes mem-
ory cases accordingly to their potential usefulness for
the new problem’s solution; and (2) it provides infor-
mation on how to create a new case with a solution
that is similar to the one for the new problem.

We do not have yet sufficient results to state that
this retrieval method is better than one without the
clustering step.

Case Reuse

Case reuse involves one of three procedures: (I) reuse,
without modifications, of a past case that definitely or
hopefully has the same solution as the new problem,
(2) create a new case by splitting a case that seems
useful for the solution of a new problem and eliminat-
ing case pieces that are assumed useless for the new
solution, (3) create a new case by splitting and merg-
ing a set of past cases that, hopefully, have a solution
or part of it that contributes to the new one.

The cluster of cases that is chosen for reuse deter-
mines the procedure that is applied. If cluster no. 1 is
selected I , the case it contains is reused without any
modification and the solution for it is the solution for
the new problem. If cluster no. 2 is chosen its case
with the highest similarity value is suggested as hav-
ing the same solution as the new problem. In both
situations procedure (1) is applied.

Cases in cluster no. 3 are expected to have a solution
represented by a set of facts that contains the facts
representing the solution for the new problem. For
reuse, the system selects the case in the cluster with the
highest similarity value. This case is split in a way that

I If cluster no. I is not empty then it is expected to
contain only one case. If it has more than one case this
means the same problem has multiple solutions.

145

is expected to remove the case parts that are useless for
the solution of the new problem. The system removes
the case’s pieces that contain the subset Q of solution
facts for which ,S - S’ = Q with S the set of facts
describing the case’s solution and S’ the set of facts
representing the new problem’s solution. Procedure
(2) is used in those situations.

Reuse from clusters no. 4 or 5, containing cases that
potentially contribute to the new problem’s solution,
involves catching the cases Cx, ..., Cn in the cluster for
which it is supposed that $1 U...U$, = S~, with Si the
set of facts representing the solution for case Ci. Cases
C1, ..., C, are split 2 and merged in order to create a
new case with solution 8x U ... U S,. Procedure (3)
the one involved in this process.

RECIDEpsy’s reuse unit favors the application of
those clusters with lower indexes (cluster no. 1 over
no. 2, ...). The reason to choose cluster no. 1 if it is
not empty is obvious. It is the only cluster that has a
case known to have the correct solution. The prefer-
ence criterion for the other clusters is to pick the one
that requires fewer splitting and merging operations
for generation of a new solution. The more splitting
and merging operations are performed, the more likely
it is that an unknown intra or inter-case dependency
is disregarded.

Indivisible and incompatible cases have a chief role
in case reuse. Splitting and merging operations assume
independence between the split and merged case’s
parts. This independence doesn’t exist in general. In-
divisible and incompatible cases represent intra and
inter-case dependencies. Indivisible and incompati-
ble cases are acquired interactively during problem-
solving.

Putting All Together

Now we introduce how problem-solving and learning
occurs in RECIDEpsy. The set of steps performed
since the input of a new problem until its solution (cre-
ated by the system or provided by the user) is called
an iteration. A working session with RECIDEpsy
comprises a series of iterations.

An iteration entails the following steps: (1) retrieval;
(2) reuse; (3) evaluation; and (4) knowledge acquisi-
tion. In the first step a new problem is input and the
retrieval unit creates ranked clusters of cases in mem-
ory that potentially contribute to its solution. In the
next step clusters are received by the reuse module that
dmoses one cluster applying the heuristics described in
the preceding subsection. Then one of the reuse pro-
cedures is applied creating a case that potentially has
the same solution as the new problem. In step 3 the
system gives the user a new solution plus the case(s)
its origin. If she/he accepts the solution the iteration
is complete. If the solution is not accepted, the user,

~Splitting is necessary as it is possible that some parts
of the cases C1 C, are useless for the new solution.

PROBLEM: SOLUTION:

!<Subject Data and Familiar Background~ <Main Strategies>
Sex: Male Assertiveness Training
Age: 12- 14 Selman’s Interpersonal
Num. of Siblings: 2 Negotiation Strategies
Siblings are: Younger Enhancement of
Familiar Relationship: Conflitlng Learning Skills

<Educational Background> <Complementary Strategkm>
Degree achieved: 6 Self.knowledge Enhancement
Educational Branch: Basic Scholarlfy Family Support Mobilization
Siblings’ Educational Achievements:

Induces NegativeComparieion
<Behavioral end

Cognitive Strategies>
<Paychologlcil Struct and Role Playing

Development Tasks> Thinking Cut-off
interpersonal Relation: Low Recording of Thoughts,

Behaviors and Emotions
<Learning Characteristics>

Num of Areas with Underachiev.:
Disfunctionel Behaviors

Evaluation
more than 3

Influencial Dispersion Sources: Internal
Underachiev. Started: Years Ago

I EXPLANATIONS:
Sex : Male ANDAge: 12 - 14 -> Adolescence Crisis
FamiliarRelationship: Confliting ANDSIbllngs’ Educational Achievements:

Induces Negative Comperlslon AND Adolescence Crisis ->
Confict Situations

Confict Situations AND Interpersonal Relation: Low ->
Lack of Interpersonal Skills

Num of Areas with Underechlev.: more than 3 AND Undarachiev. Started:
Years Ago -> Enhancement of Learning Skills

Conflcl Situations ->+ Self.knowledge Enhancement
Confict Situations -> FamllySupport Mobilization
Lack of Interpersonal Skills -> Assertiveness Training AND Setman’s

interpersonal Negotiation Strategies AND Recording of Tho~tghts,
Behaviours and Emotions AND Disfunctional Behaviors Evaluation

Influencial Dispersion Sources: Internal -> Thinking Cut-off

Figure 3: A case in the domain

after analyzing the cases used for its construction, de-
scribes the splitting and merging constraints that were
violated and in the origin of this wrong answer. These
constraints are input in terms of indivisible and in-
compatible cases. The correct solution and a causal
justification (a new case) are also given to the system.

Test Domain

The tests we present in this paper are from
RECIDEpsy an expert system in the domain of psy-
chology. Its task is to suggest an intervention program
for scholar underachievers.

A past experience comprises a context (past prob-
lem) in which a set of intervention strategies (past so-
lution) was applied successfully. A context is described
by four groups of facts (Figure 3): subject data and
familiar background, educational background, psycho-
logical structure and development tasks, and learning
characteristics. Intervention strategies are divided into
three groups: main, complementary and behavioral
and cognitive strategies. The domain vocabulary com-
prises 78 attributes for context description, and 101
intervention strategies.

Figure 3 represents a case in the domain as it is out-
put by RECIDEpsy. In explanations, a ’--*’ symbol,
represents a complete explanation and a ’--*+’ sym-
bol a partial explanation. This case describes a male
client between 12 and 14 years old, with two siblings,

146

PROBLEM: !SOLUTION:
:<Main Strategies>

Assertlveness Training

<Behavloral and
Cognitive Strata>

Role Playing

EXPLANATIONS:

Figure 4: An indivisible case in the domain

both younger and with a conflicting relation with rela-
tives. The level of education achieved is six (six years
of basic education). He is unfavorably compared with
his siblings due to their scholar achievements. Inter-
personal relationship is low. His grades comprise more
than three unsuccessful disciplines. He shows internM
sources of dispersion and has a long history of under-
achievement.

The main intervention strategies that were ap-
plied were assertiveness training, Selman’s interper-
sonal negotiation strategies, and enhancement of learn-
ing s-kills. The complementary strategies were self-
knowledge enhancement and family support mobiliza-
tion. The behavioral and cognitive set of intervention
strategies were role playing, thinking cut-off, recording
of thoughts, behaviors and emotions, and disfunctional
behaviors evaluation.

The two former explanations provided by the experts
for this intervention program were: (1) being a male
client aged between twelve and fourteen are causing
an adolescence crisis, and (2) a conflicting familiar re-
lationship marked by negative comparison, associated
with the adolescence crisis characterize a conflict situ-
ation.

In this task indivisible cases represent intervention
strategies that cannot be split when they appear in
the past case candidate for splitting (Figure 4). The
indivisible case in Figure 4 states that "assertiveness
Training" and "Role Playing" are two techniques that
cannot be separated if they occur in a past case be-
ing reused. Incompatible cases represent the solutions
given by the system that were classified as wrong. An
example is shown in Figure 5. The solution component
of the incompatible case in Figure 5 describes a wrong
answer given by the system to the situation represented
in the case’s problem part.

The current domain library has 31 successful cases
and 78 cases of failure (45 indivisible and 33 incompat-
ible).

Experimental Results

Three kinds of tests (labeled TEST #1, #2, and #3)
were performed. The set of successful cases used in
these tests was randomly ordered and this ordering was
maintained along all the experiments. In the evalua-
tion step of each solving/learning iteration the solution
given by the system was classified as correct, ambigu-
ous, or wrong. If a solution contained more than 70%

<Subject Data end Familiar Background~
Sex: Male
Age: 12 - 14
Num. o(Siblings:
Siblings ere: Younger
Familiar Relationship: Confliting

<Educational Background>
Degree achieved: 6
Educational Branch: Basic Scholar~
Siblings’ Educational Achievements:

Induces Negative Compedsion
<Psychological Struct and

Development Tasks>
Interpersonal Relation: Low

<Learning Charactarlotlc=>
Num ot Areas with Underachiev.: more t
Influencial Dispersion Sources: Internal
Underachiev. Started: Years Ago

SOLUTION:
<Main Strateglee>

Meiohenbaum’s Self
Instructional Training

Sistomatic Desensitization
<Complementary Strateglee~

Elimin of Sulperstieious
Bahavtour

<Behavioral and
Cognitive Strata>

Re(ormuration o(
expectations

Relormulation of atributions

Figure 5: An incompatible case in the domain

to

Test #1

Test #2

it" Tell 113
10 20 ,’to ~1~

Iteration Number

Figure 6: Cumulative number of correct solutions given
by RECIDEpsy

of the intervention strategies suggested by the expert
and the number of unsuitable strategies in this solution
were less than 30% of the total number of strategies
suggested by the experts then it was classified as cor-
rect; a solution with a percentage of unsuitable strate-
gies higher or equal to 30% was classified as wrong.
Solutions with a percentage of suitable and unsuitable
strategies out of these intervals were classified as am-
biguous.

In TEST #1 only successful cases were given to the
system in response to a wrong or ambiguous solution.
In TEST #2, after a wrong or ambiguous solution had
been suggested, the user input a set of indivisible cases
and the correct solution plus her/his justification. In
TEST #3, in response to a wrong or ambiguous solu-
tion, the user gave an incompatible case plus the cor-
rect case for the wrongly solved problem. Figures 6, 7,
and 8 summarize the results obtained with these tests.

In TEST #1 the number of correct results (Figure 6)
is quite small. Only in the 33th iteration was a correct
solution suggested. TEST #3 did not provide much
better results. The first correct solution occurred after
the 31st iteration. In both tests only two situations
were solved correctly. In TEST #2 the obtained re-
suits were different. The first correct result appeared
after the 19th new problem and after the 31st iteration
all the situations were solved correctly by the system,
except in the 34th iteration in which the solution was
wrong.

The cumulative number of wrong solutions (Fig-

147

i il
I0 20 30 38

Iteration Number

-- Test #t

Test #2

......... Test #3

Figure 7: Cumulative number of wrong solutions given
by RECIDEpsy

,°I
.°°

l0 20 30 38

ItereUon Number

Test # 1

Test #2

......... Test #3

Figure 8: Cumulative number of successful cases given
to RECIDEpsy

ure 7) was peculiar in some aspects that we will dis-
cuss in the next section. With TEST #1 we did not
have wrong solutions until iteration 23, after that the
number increased rapidly until the 27th iteration and
smoothly after that. In 38 iterations we had six wrong
solutions. In TEST #2 wrong solutions were given
earlier in the 14th iteration until a number of six. In
TEST #3 a wrong solution occurred after the 17th it-
eration and the number of wrong solutions increased
smoothly until a number of three in the 38th iteration.

In TEST #1 and #3, the number of cases input, in
response to a wrong or ambiguous solution (Figure 8)
increased approximately by the ratio 1/1 relatively to
the number of iterations. In TEST #2 the evolution
was similar to the other tests until the 24th iteration.
Between the 30th and the 38th iteration the number
of input cases only increased by one.

Analysis of Experimental Results
Considerations on the experimental results relate, at
first, to the solutions (sets of intervention strategies)
suggested by the system. From Figure 6, showing the
cumulative number of correct solutions given by the
system, it is clear that when we did not input indivisi-
ble cases describing dependencies between intervention
strategies (TEST #1 and #3), the system’s perfor-
mance was quite bad. When indivisible cases were in-
put (TEST #2) the performance changed rapidly after

the 30th iteration. After that, the system gave always
a correct solution except in the 34th iteration. This
means the cases input until the 30th iteration provided
a good coverage of the domain.

Another meaningful clue on system’s performance is
the number of wrong solutions it produced (Figure 7).
The results from TEST #1 were as we expected. The
system began to give some wrong results after itera-
tion 23. The explanation for this is that before this
iteration the number of cases in the system’s library
were not sufficient for it to provide a wrong solution
and so the system kept giving ambiguous solutions.
Sometimes, after this iteration, the system chose the
wrong cases for splitting and merging and in conse-
quence some wrong solutions were suggested. The re-
sults on wrong solutions in TEST #2 were odd. We
did not expect to obtain wrong solutions in this test
sooner than in TEST #1. The explanation we have for
this is that some ambiguous solutions in TEST #2 were
created from cases in memory that were erroneously re-
trieved. The information provided by indivisible cases
caused bigger parts of these cases to be used for gener-
ation of a solution, turning it clearly into a wrong one
in TEST #2. An interesting result was obtained with
TEST #3. It is evident that input of incompatible
cases disabled the repetition of wrong solutions sug-
gested in the past. As we can see from Figure 7, after
the 32nd iteration the number of wrong cases was 50%
lower than in TEST #1 and #2.

Figure 8 shows that in TEST #1 and #3, until the
38th iteration, we had to give the system almost all
the solutions and causal justification (cases). When
indivisible cases are given (TEST #2) the scenario
changes. The domain turns to be covered with a set of
31 cases.

Related Work

This work extends our previous view on reasoning
on cases imperfectly described and explained imple-
mented in CLASH (Bento & Costa 1993). It is also
related with the work of Manuela Veloso (Veloso 1992)
concerning to indexing driven by explanations and to
the concept of footprint introduced by her and which
we extend by considering three types of footprints.

A system which deals with cases of failure is CHEF
(Hammond 1986). It stores information on why a meal
plan did not work in the form of explanations of failure

ARCHIE-2 (Domeshek & Kolodner 1991) is an help
system for architectural conceptual design. It keeps in
memory information on failures in the form of design
features that did not work in the creation of a concep-
tual design.

These two systems have in common the creation of
new solutions from single cases and the use of informa-
tion on failures.

Two other systems, CLAVIER (Barletta & Henessy
1989) and COOKIE (McCartney 1989), create a
case from multiple pieces of past cases.

148._

CLAVIER is a shop floor assistant for autoclave
loading. Its cases represent layouts of objects to be
cured. It uses pieces of past cases for generation of
new solutions. Adaptation comprises substitution and
composition operations. This system uses information
on unacceptable composition operations.

COOKIE is a planning system that generates new
plans by splitting and merging old ones. The author
of this system describes two types of difficulties in the
adaptation process: (1) synchronization; (2) partial
plan interaction. Synchronization relates to temporal
constraints in merging multiple plans. It is assumed
that, by default, partial plans do not interact.

Comparing RECIDE with CHEF, cases of failure
within our framework are more ’case-based like’ in the
sense that we do not provide explanations for failures.
Our cases of failure represent cases’s components that
are indivisible or incompatible.

The information used by ARCHIE-2 on design fea-
tures that did not work can be represented within our
approach by incompatible cases.

RECIDE, CLAVIER and COOKIE, all use case
pieces for the generation of a new case. In general
we defend that in systems that generate a new case by
splitting a previous one or by splitting and merging a
set of previous cases it is important to handle knowl-
edge on intra-case dependencies (indivisible cases) and
inter-case dependencies (incompatible cases). We be-
lieve this knowledge is frequently easier to acquire than
failure explanations with the extra advantage that in-
divisible and incompatible cases are represented at the
operational level.

Conclusions

We have provided evidence that indivisible and in-
compatible cases improve the performance of our case-
based system. Indivisible cases lower the number of
successful experiences needed for domain coverage. In-
compatible cases lower the number of wrong solutions
given by the system which is also a worthwhile result.

Also some final remarks must be made on the tests
described in the paper. One is that it would be inter-
esting to know the system’s performance for a bigger
set of new situations and, hopefully, to confirm that the
domain is well covered with 31 cases when indivisible
ones are provided.

A second question relates to coexistence of indivis-
ible and incompatible cases. In our tests it has been
shown that indivisible cases decrease the number of
successful experiences necessary for domain coverage.
Incompatible cases decrease the number of wrong so-
lutions given by the system. It would be interesting to
verify if coexistence of the two types of cases of failure
sums up the benefits provided by each one alone.

A third aspect worthy of studying would be the effect
of changing the input ordering of the new problems and
cases.

Acknowledgments
We would like to thank Paula Vieira and Eduarda
Gdis who provided the case library, Josd Luis Ferreira
and the anonymous reviewers for many useful com-
ments, and the Luso-American Foundation and Fun-
dac£o Caiouste-Gulbenkian for financial support.

References
Barletta, Ralph, and Mark, William 1989.
Explanation-Based Indexing of Cases. In Proceedings
of the Second Case-Based Reasoning Workshop. Mor-
gan Kaufmann.
Barletta, Ralph, and Hennessy, Daniel 1989. Case
Adaptation in Autoclave Layout Design. In Proceed-
ings of the Second Case-Based Reasoning Workshop.
Morgan Kaufmann.
Bento, Carlos, and Costa, Ernesto 1993. A Similarity
Metric for Retrieval of Cases Imperfectly Described
and Explained. In Preprints of the First European
Workshop on Case-Based Reasoning (EWCBR-93).
Univ. of Kaiserslautern, Germany.

Bento, Carlos, and Costa, Ernesto 1994. A Qualita-
tive Approach for Retrieval of Cases Imperfectly De-
scribed and Explained, Technical Report, DEE-UC-
001-94, Dept. de Eng. Electrotecnica, Univ. de Coim-
bra.
Berger, Jeffrey, and Hammond, Kristian 1991. Ro-
engten: A Memory-based Approach to Radiation
Therapy Treatment Design. In Proceedings of the
Third Case-based Reasoning Workshop. Morgan
Kaufmann.
Cain, Timothy, Pazzani, M. J. and Silverstein, Glenn
1991. Using Domain Knowledge to Influence Simi-
larity Judgments. In Proceedings of the Third Case-
Based Reasoning Workshop. Morgan-Kaufmann.

Domeshek, Eric, and Kolodner, Janet 1991. Toward a
Case-based Aid for Architecture. International Jour-
nal of Expert Systems 4(2): 201-220.

Hammond, Kristian 1986. CHEF: A Model of Case-
Based Planning. In Proceedings of AAAI-80. Cam-
bridge, MA: AAAI Press / MIT Press.

Koton, Phyllis 1989. Using Experience in Learning
and Problem Solving, Ph. D. diss, Laboratory of
Computer Science, Massachusets Institute of Tech-
nology, MIT /LCS /TR-441.
McCartney, Robert 1993. Planning from Partial and
Multiple Episodes in a Case-based Planner. In Pro-
ceedings of the Workshop on Case-based Reason-
ing of the National Conference on Artificial Intel-
ligence. Technical Report WS-93-01. AAAI Press.
Menlo Park, CA.
Veloso, Manuela 1992. Learning by Analogical Rea-
soning in General Problem Solving. Ph.D. diss.,
School of Computer Science, Carnegie Mellon Uni-
versity, Pittsburgh, PA.

149

