
Improving Face Detection

Penousal Machado1, João Correia1, and Juan Romero2

1 CISUC, Department of Informatics Engineering, University of Coimbra,
3030 Coimbra, Portugal machado@dei.uc.pt, jncor@dei.uc.pt

2 Faculty of Computer Science, University of A Coruña, Coruña, Spain
jj@udc.pt

Abstract. A novel Genetic Programming approach for the improvement
of the performance of classifier systems through the synthesis of new
training instances is presented. The approach relies on the ability of
the Genetic Programming engine to identify and exploit shortcomings of
classifier systems, and generate instances that are misclassified by them.
The addition of these instances to the training set has the potential
to improve classifier’s performance. The experimental results attained
with face detection classifiers are presented and discussed. Overall they
indicate the success of the approach.
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1 Introduction

Object detection systems, in particular face detection, have become a hot topic of
research. Applications that employ this kind of systems are becoming widespread.
For instance, they can be found in search engines, social networks, incorporated
in cameras, or in applications for smart phones. Like in other example-based
learning techniques, the datasets employed are vital, not only for attaining com-
petitive performances, but also for correctly assessing the strengths and short-
comings of the classifiers. As such, developing adequate datasets for training,
testing and validation becomes a crucial and complex process.

The use of Evolutionary Computation (EC) techniques in the fields of Com-
puter Vision (CV) and Machine Learning (ML) is widespread. Among other
applications, EC has been used for digital filters tuning, parameter optimiza-
tion and image generation. In the field of ML, EC applications include evolving
classifier parameters, thresholds, feature selection for classification, the classifier
itself, etc. Works such as [17, 7, 1, 14] combine EC, CV and ML aspects.

This paper explores the use of Genetic Programming (GP) to assess and im-
prove classifier’s performance through the synthesis of new training examples.
More specifically, the current work focus on: (i) assessing classifier’s performance,
(ii) using evolutionary algorithms to generate new examples, (iii) using the gen-
erated examples to boost the performance of the classifier.

We propose a novel generic evolutionary framework for classifier improve-
ment through the synthesis of new training examples. This framework is then
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instantiated by combining a GP image generation system with a state of the art
face detector [19].

The experimental results show that GP was successful in finding shortcom-
ings of the face detector, generating hundreds of images that were incorrectly
classified. They also show that the addition of these images to the training set
reduces its shortcomings, promoting detection accuracy, and leading to better
classifier’s performance.

The paper is organized as follows: Section 2 makes a brief overview of related
work; Next, in section 3, we present the proposed framework for classifier’s per-
formance; Section 4 describes the experimental setup; The experimental results
are presented and analyzed in section 5; Finally, in section 6, overall conclusions
are drawn and future research indicated.

2 State of the Art

As previously mentioned, EC has been used in the development and improvement
of classifier systems. However, we were unable to find works that match closely
the approach proposed in this paper. In this section we make a short overview
of approaches that share common features and goals.

Ventura et al.[18] used EC to generate training samples for a Neural Network
(NN). The goal was to optimize a computer network routing system. The fitness
function was designed to achieve a pre-determined state. The individuals were
composed by vectors of control values that represented the state of the network
at some point in time. A NN was then trained with the best individuals. This
NN was submitted to a series of tests related to the aimed network state. This
work represents and attempt to evolve training samples using a GA which is one
of the common goals of our work.

The work of Mayer et al. [12] focused in the optimization of NN’s training
set. It consisted in a Genetic Algorithm Active Selection method. An Active
Sampling method generated new data patterns based on the selected training
data, in order to enhance the dataset with new information. The GA evolved
subsets of training and sampled data, which were used to train NNs. These NNs
were assessed by a testing set. The performance in the test phase determined
which subset was the best training set to be used. Related to our work, this
approach generates new training samples from the existing samples.

Chen et al. [2] proposed a self-adaptive GA to improve face detection sys-
tems. It consisted on resampling the face training dataset. The individuals of the
GA were encoded as strings containing the pixel intensity values. The individ-
uals were submitted to mutation and recombination operators. Recombination
consisted in segmenting two individuals and combining some of the segmented
parts. Mutation consisted in the probability of changing illumination, position
and angle of the selected segmented parts. The whole process starts with the face
training set being employed as an initial population to perform GA operations.
The intermediate solutions of each generation were evaluated by a Sparse Net-
work of Winnows (SNoW) classifier [20], trained with the last non face samples.
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The classifier output was used to assign fitness of the individuals. The fittest in-
dividuals continued to the next generation and the weaker were discarded. The
last population was added to the face training set which was used to train a
new SNoW classifier. In this case it relates to this paper due to the usage of the
classifier output to fitness assignment.

More recently, D. Dubey [3] explored the face detection problem by using
NNs, resampling methods and a GA. The images pixel intensity values were
considered as individuals. The initial face training set examples were resampled
by using rotation and scale operations, generating and adding new samples to the
original ones. The non-face training set started with white noise images, created
by assigning random intensities to each pixel. A NN was trained to discriminate
between face and non-face image with the initial sets. The GA was used to
evolve the non-face initial set. The output of the NN was used to assign fitness.
The non-face image set was updated by randomly selecting non-face individuals
that were misclassified during fitness. In each generation a new NN was trained.
After ending the GA process, a final NN was trained with the last generation of
non-faces and existing face images. The relation to our work lays on the usage
of misclassified examples and their inclusion in the training set.

3 The Framework

The proposed framework comprises three main modules: EC engine, Classifier
and Supervisor. Figures 1 and 2 present an overview of the framework and the
interaction between the EC engine and Classifier, respectively.

The application of this approach involves the following steps:

1. Selection of a positive and negative image set;
2. A Classifier System (CS) is trained based on the positive and negative in-

stances;
3. N independent EC runs are started; The CS is used to classify the generated

individuals; Their fitness depends on the results, including intermediate ones,
of the classification task;

4. The EC runs stop when a termination criterion is met (e.g., a pre-established
number of generations, attaining a fitness value);

5. The set of negative images is updated by adding the evolved images for which
the CS and the Supervisor do not agree (e.g. classified as positive by the CS
and as negative by the Supervisor)
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Fig. 1: System overview.
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Fig. 2: Evolutionary model and its interaction with the classifier.

6. The process is repeated from step 2 until the boosting criterion is met;

By explaining how this framework is instantiated we will also explain the
underlying rationale. In the context of this paper the CS system consists in a
Haar Cascade classifier (see Viola et al. [19]) built to detect frontal faces. The
code and executables are included in the OpenCV API3. This CS approach was
chosen due to its state of the art relevance and for its fast classification. This
algorithm uses a set of small features in combination with a variant of the Ada-
boost [4], and is able to attain efficient classifiers. The classifiers assume the form
of a cascade of small and simple classifiers that use Haar features [13].

The EC engine used in this experiments is inspired by the works of Sims
[15]. It is a general purpose, expression-based, GP image generation engine that
allows the evolution of populations of images. The genotypes are trees composed
from a lexicon of functions and terminals. The functions include mathematical
and logical operations; the terminal set is composed two variables, x and y, and
random constant values. The phenotypes are images, rendered by evaluating the
expression-trees for different values of x and y, which serve both as terminal
values and image coordinates. In other words, to determine the value of the
pixel in the (0,0) coordinates one assigns zero to x and y and evaluates the
expression-tree. A thorough description of the GP engine can be found in [10].

In the context of this paper, positives are images that contain faces while
negatives are images where no face is present. The goal of the EC engine is to
evolve images that the CS classifies as faces. To create a fitness function able to
guide evolution it is necessary to convert the binary output of the face detector,
to one that can provide suitable fitness landscape. This is attained by accessing
internal results of the classification task that give an indication of the degree
of certainty in the classification. As such, images that are immediately rejected
by the classifier will have lower fitness values than those that were close to be
classified as possessing a frontal face.

Considering the structure of the selected classifier and through trial and error
we developed the following fitness formula:

3 OpenCV — http://opencv.willowgarage.com/wiki/
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fitness(x) =
countstagesx∑

i

beststagedifferencex(i) ∗ i + countstagesx ∗ 10 (1)

Variables countstagesx and beststagedifferencex(i) are extracted from the
face detection algorithm. Variable countstagesx, holds the number of stages that
image, x, has successfully passed in the cascade of classifiers. The rationale is
the following, an image that passes several stages is likely to be closer to being
recognized as having a face than one that passes fewer stages. In other words,
passing several stages is a pre-condition to being identified as a face image.
Variable beststagedifferencex(i) holds the maximum difference between the
threshold necessary to overcome stage ith and the value attained by the image
at the ith stage. Images that are clearly above the thresholds necessary to pass
each stage are preferred over ones that are only slightly above them. Obviously,
this fitness function is only one of the several possible ones. Although room for
improvement is likely to exist, such improvements are not necessary for the goals
of the current paper.

The proposed framework relies on the ability of EC systems to find and
exploit the shortcomings of the classifiers to “artificially” increase fitness. The
propensity of EC to find “shortcuts” that exploit weaknesses of the fitness as-
signment scheme is well-known (see, e.g., [16, 17, 11]). Thus, the goal is to evolve
false-positives: images that are classified as faces, but that should not have been
classified as faces. By adding this false-positives to the negative training set and
re-training the CS we wish to correct exploitable flaws of the classifier.

The Supervisor for this experiment is an automatic module that is responsible
for gathering all distinct images created during the EC runs. Evolved images that
are classified as faces are added to the training set for the next boosting iteration.

4 Experimental Setup

To assess the validity of the proposed approach we performed 30 independent
runs of the framework described in the previous section. The framework proposes
the use o N independent evolutionary runs, however, we are primarily interested
in assessing the contributions that each EC run may bring. Thus, for the scope
of this paper we set N = 1 and perform 30 independent runs of the the proposed
framework. In this section we describe the experimental settings employed in
these runs.

4.1 Classifier Training

For training purposes we used the “opencv haartraining” tool of OpenCV. The
relevant classifier parameters are presented in table 1 and were chosen based on
the works of Viola [19] and Lienhart [9, 8]. They reflect a compromise between
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Fig. 3: Examples of cropped positive images.

attaining good classifier’s performance and manageable training time. In addi-
tion to the training parameters, there are other classifier settings that need to
be established. We chose to use the default parameters of OpenCV (see table 2).

The quality of the positive and negative datasets used in training significantly
influences the performance of a classifier. It is important to have good positive
examples of the object that we are training in order to attain good success
rates. For this experiment images from two well-known datasets were used: “The
Yale Face Database B” ([5]) and “BioID Face Database”([6]). “The Yale Face
Database B” is a dataset with a total 5850 grayscale images with the subjects
in diverse positions and light variations. The Bio-ID Face Database dataset has
1521 frontal grayscale images. Each image shows the frontal view of a face of
one out of 23 different test persons with various expressions.

We wish to test if the proposed framework contributes to improvements of
classifier’s performance. Adding different poses has no interest in this context
and would make development and analysis harder. As such, we decided to fo-
cus exclusively on frontal faces. Although it is easier to develop a good initial
classifier, it is likely to make improvements harder, since there is less room for
improvement.

Considering this constraint, the total number of available positive examples
is 2172. In order to build the ground truth file, the images have to be manu-
ally selected and cropped. These cropped images, see figure 3, are the objects
that the Haar classifier attempts to discriminate from negative samples. After

Table 1: Haar Training parameters.

Parameter Setting

features ALL
Input width 20
Input height 20
Number of stages 14
Number of splits 1
Min Hit rate 0.999
Max False Alarm 0.5
Adaboost Algorithm GentleAdaboost

Table 2: Classifier parameters.

Parameter Setting

Window width 20
Window height 20
Scale factor 1.2
Min face width 0.75× inputwidth
Min face height 0.75× inputheight
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Fig. 4: Examples of negative images.

manually filtering out images that were too dark, or where only part of the face
was illuminated, a total of 1905 positive examples, and corresponding cropped
versions, was attained.

The negative dataset influences both the training time and test performance.
Generally speaking hard and large negative datasets imply longer training times,
but also better performance. We employed the “Urtho - Negative face Dataset”4,
which consists of a total of 3019 images of landscapes, objects, drawings, etc. To
keep the carnality of the negative and positive datasets balanced we randomly
selected 1905 of the Urtho images. A sample is presented in figure 4.

4.2 Genetic Programming Engine

The settings of the GP engine are presented in table 3. The number of generations
may appear low, however, preliminary experiments indicated that 50 generations
were enough to evolve images classified as faces. Further tests showed that some
of the evolutionary runs (23% in the conducted experiments) were unable to
evolve such images, but also that increasing the number of generations was
inefficient. Therefore, we tackle this problem as follows: if after 50 generations
the evolutionary run is unable to find a minimum of 300 images, this run is
discarded, and a new evolutionary run with a different random seed is initiated.

4.3 Assessing Classifier’s Performance

In order to test the different classifiers, a performance evaluation tool was imple-
mented. It allows loading an image test set, with a ground truth file associated,
and a classifier configuration file. The performance is measured in terms of hits
(H), misses (M), false alarms (FA), correct (C) and incorrect (I). In order to do
this, it loads the parameters and classifier of the configuration file, and perform
the face detection. Then it compares the result with the ground truth file. If
the result matches or lays within the tolerance area defined by the performance
tool parameters, it is a hit. If it lays outside the tolerance area it is counted as

4 Tutorial haartraining — http://tutorial-haartraining.googlecode.com/svn/

trunk/data/negatives/
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Table 3: Parameters of the GP engine.

Parameter Setting

Population Size 100
Number of generations 50
Crossover probability 0.8
Mutation operators sub-tree swap, sub-tree replacement,

node insertion, node deletion, node mutation
Initialization method ramped half-and-half
Initial maximum depth 5
Mutation max tree depth 3
Function set +, -, *, /, min, max, abs, sin,

cos, if, pow, mdist, warp, sqrt, sign, neg
Terminal set X, Y, scalar and vector random constants

Table 4: Parameters used by the performance tool.

Parameter Setting

Minimum Window width 20
Minimum Window height 20
Scale factor 1.2
Maximum size difference factor 1.5
Maximum position difference factor 0.3

a false alarm. If no face is detected and a face exists, it is counted has a miss.
A positive instance is considered correctly classified if, and only if (i) at least
one face was detected and (ii) the regions were the faces were detected match
the expected region. In other words, there must be at least one hit and no false
alarms. An example follows, if the classifier identifies 2 faces on an image, one in
the expected position and the other in an incorrect position, then the instance
is considered incorrectly classified. A negative instance is classified as correct if
the classifier detects no faces.

The parameters are defined in table 4 and are based on the default parameters
of OpenCV’s “opencv performance” tool.

5 Experimental Results

As previously mentioned we performed 30 independent runs of the framework
presented in section 3 using the experimental settings described in section 4.
As previously mentioned, although the framework proposes the use of several
parallel evolutionary runs, we in this test N = 1.

Figure 5 displays the evolution of the population average fitness and of the
best population individual across generations. In essence this chart shows that
in successful runs the GP engine finds images that are classified as faces in few
generations. Please notice that runs where the GP was unable to find images
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classified as faces were discarded. These runs are useless for improving the clas-
sifier’s performance since no images would be added to the dataset.

Figure 6 presents examples of images evolved in different evolutionary runs.
All of these images have been considered faces by the classifiers. This highlights
the shortcomings of the classification system, based on a state of the art classi-
fication approach, and further indicates the ability of the GP engine to exploit
these shortcomings finding images that are false positives.

Once each evolutionary run ends, the images classified as faces are added
to the negative dataset and the classifier is re-trained. This process yields 30
new classifiers. Considering the goals of our research our primary interest is
the comparison of the performance of these classifiers with the initial classifier
model. For this purpose we consider two validation sets:

– Flickr – 2166 negative images;
– Feret – 902 positive images from Facial Recognition Technology Database5;

The Flickr image dataset consists in images retrieved from a search in Flickr
using the keyword “image” and excluding from the resulting set, images that
contain a frontal human face. This process results in a negative dataset composed
of landscapes, buildings, animals, computer screenshots, varied objects, etc.

The Feret validation set is a positive dataset composed by grayscale frontal
faces, one face per image with a simple background. The images were manually
selected and cropped. The purpose of using this validation dataset is to test the
ability of the classifiers in detecting a clear frontal face.

Samples of the validation sets are presented in figure 7.
Table 5 presents a synthesis of the attained results, indicating the perfor-

mance of the: initial classifier; average performance of the 30 classifiers created
using the framework; performance of two of the best framework classifiers found.
5 The Feret Database – http://face.nist.gov/colorferet/colorferet.html
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Fig. 5: Evolution of fitness across generations. Results are averages of 30 independent
runs.
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Fig. 6: Examples of evolved images that were classified as faces.

Fig. 7: On the top row, samples of images of the Flickr dataset; On the bottom row
samples of the Feret dataset.

Focusing on the comparison of the initial classifier with the average perfor-
mance of the framework classifiers: the most striking difference in performance
is the significant decrease in the number of false alarms which occurs for both
validation datasets. On average, for the two datasets, there is a decrease of 25%
in the number of false alarms. Adding false positives to the negative training
dataset results in classifiers that are more “demanding” than the initial one
when it comes to consider the presence of a face in an image. As a consequence,
it becomes more robust and precise in the identification, which leads to a de-
crease in the number of false positives.

The disadvantage is that some face images may go unnoticed. In fact a de-
crease of the number of hits occurs in the Feret validation dataset (852 vs. 844,
which represents a decrease of less than 1%) and, consequently, of the number
of misses (50 vs. 58, a 13.8% increase). More importantly, the percentage of cor-
rectly identified images (C) increases for both validation datasets. As expected,
the improvements of performance are more noticeable in the Flickr dataset,
which is composed exclusively of negative images.

It is also important to compare the performance of the best framework classi-
fiers with the performance of the initial models. Table 5 also presents the results
of two of the frameworks classifiers that showed increases in performance in both
validation datasets. These results demonstrate that it is possible to increase the
percentage of correctly identified faces and decrease false alarms without sacrific-
ing the number of hits and misses. Unfortunately, unless it is possible to identify
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Table 5: Results attained by the initial classifier and by the framework classifiers in
three independent validation datasets. The Flickr dataset is a negative dataset the
concept of hits and misses does not apply.

Flickr Feret

Classifier FA %C H M FA %C

Initial 861 73.45 852 50 97 85.59
Average 643.00 78.91 844.00 58.00 77.73 86.12

Classifier 14 581 80.97 852 50 63 88.47
Classifier 30 701 77.75 856 46 64 88.91

which classifiers will show this behavior in validation sets before gathering the
validation results, the relevance of this results is limited.

Although in this paper we focus on examining the behavior of the proposed
framework, it is important to notice that from a practical perspective we do not
need 30 classifiers, we just need one. Further testing is necessary to determine if
the performance of these classifiers is generalizable to other validation datasets.

6 Conclusion and future work

A novel evolutionary framework for the improvement of classifier’s performance
through the synthesis of training examples is presented and discussed. The ex-
perimental results attained in two validation datasets show the potential of the
approach, demonstrating significant decreases in the number of false alarms and
small losses in the number of hits. Additionally, several of the framework classi-
fiers yield better performance in all parameters and for both validation datasets.

Although the results are promising there are several aspects that require fur-
ther testing and development. Additional testing is necessary to assess if the
results attained by the best framework classifiers are generalizable to other vali-
dation datasets. The framework anticipates the use of several parallel evolution-
ary runs and boosting iterations, but the presented results consider only one.
Gathering the evolved false positives of all EC runs, adding them all to the
negative dataset, and training a single classifier is likely to yield better overall
performance. By increasing the number of iterations one forces the EC to focus
on different shortcomings of the classifier, which may result in better overall
performance.

A final word goes to the supervisor module. Judiciously selecting which im-
ages should be added to the negative dataset is likely to contribute to better
performances and lower training times. Experiments concerning these aspects
are already taking place.
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